Exercise Session 01 — Asymptotics

Data Structures and Algorithms
These slides are based on those of the lecture, but were adapted and

extended by the teaching assistant Adel Gavranovic
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1. Intro




Intro



Intro

m Who am I?



Intro

m Who am I?
m Who are you?



2. Learning Objectives




Learning Objectives

Oln) )

[J Get to know the weekly agenda for this course

[J Understand differences between Problem, Algorithm, and Program
[ Get to know big-O notation (and its friends © and ©)

O] Learn some BIX and Markdown
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4\
] U ] ] 0 ]
preliminary discussion ‘ post discussion

Issuance submission

Exercises availabe on Monday.

Preliminary discussion in the following recitation session
Solution of the exercise until the following Thursday.
Discussion of the exercise in the next recitation session.
Feedback roughly within 10 days after submission date.
Study Center on Thursday.



4. Repetition Theory




m What is a problem?
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m What is an algorithm?

=» well-defined computing procedure to compute output data from input data.
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m What is a problem?
m What is an algorithm?

=» well-defined computing procedure to compute output data from input data.

m What is a program?

=» Concrete implementation of an algorithm



Problems, Algorithms and Programs

[ Problem ]
lsowesa

[ Algorithm ]
Hmpmmemsan

[ Program ]




[ Problem ]

can be solved by multiple

Y

[ Algorithms ]

can be implemented in various ways

[ Proéram ]




Program  Computing time Measurable value on an actual machine.

Algorithm  Cost Number of elementary operations
Problem  Complexity Minimal (asymptotic) cost over all algorithms that

solve the problem.



Program  Computing time Measurable value on an actual machine.

Algorithm  Cost Number of elementary operations

Problem  Complexity Minimal (asymptotic) cost over all algorithms that
solve the problem.

=» Estimation of cost or computing time depending on the input size, denoted by n.



Asymptotic behavior

m What are ©(g(n)), ©(g(n)), O(g(n))?



Asymptotic behavior

m What are ©(g(n)), ©(g(n)), O(g(n))?
=» Sets of functions!



Asymptotic behavior

n— stw) € JL 30\]
(nYE G (3(n)
m What ar@g O(g(n)), O(g “' v 32\)
=» Sets of functlons'
o(») —
subset ACB G(l"](h])

proper subset A ¢ B
intersection ANB



Asymptotic behavior

Given: function f : N — R.
Definition:

O(g)={f N=>R|Fec>0,n0 e NIVn >ny:0< f(n) <c-g(n)}
Qg)={fN—=R|Fc>0,n0 e N[Vn >np:0<c-g(n) < f(n)}
O(g) = O(9) NQg)

Intuition:

f € O(g): f grows asymptotically not faster than g. Algorithm with running
time f is not worse than any other algorithm with g.

f € Q(g): f grows asymptotically not slower than g. Algorithm with running
time f is worse than any other algorithm with g.

f € O(g): f grows asymptotically as fast as g. Algorithm with running time f

IS as good as any other algorithm with g. 14



Used less often

Given: function f : N — R.
Definition:

O(@)={fN=R|Fc>0,n0 e NVn>ng:0< f(n) <c-g(n)}
<c

olg) ={f N = R|Ve>03ng € N|Vn >ny:0< f(n) ~g(n)}
Qg)={f:N—=R|FIc>0,n e NVn>ny:0<c-g(n) < f(n)}
wlg)={f  N=>R|Ve>03ng € NIVn >np:0<c-g(n) < f(n)}

f € o(g): f grows much slower than g
f € w(g): f grows much faster than g



Useful information for the exercise

1 lim, e 4 = 0 = f € O(g), O(f) S O(9)-

g(n)

2. limy,_e % = C > 0 (C constant) = f € ©(g).

3. 08— oo= g€ O(f) Og)  O).

g(n)

16



Useful information for the exercise

1 lim, o Z8 = 0= f € O(g), O(f) € O(g).

2. limy, o0 L8 = € > 0 (C constant) = f € 6(g).

3. 08— oo= g€ O(f) Og)  O).

Example 2

1. lim, e 75 = 0= n € O(n?), O(n) C O(n?).
2. limn_m?—2>02>2n6 n).
3.%2njoooo:>n€(’)(n) O(n) € O(n?).

16



Property

f1€0(g), f2€ O(g) = f + fo € O(g)



4 Examples (Theory)




O@)={fN—=>R|Fc>0,Ing e N:Vn>ny:0< f(n) <c-g(n)}

f(n) feO(?) Example
3n + 4

2n

n? 4+ 100n

n+n
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O@)={fN—=>R|Fc>0,Ing e N:Vn>ny:0< f(n) <c-g(n)}

f(n) feO(?) Example
3n+4 O(n) c=4,ny=14
2n O(n) c=2,n9=0

n?+100n  O(n?) c=2,n9 =100
n+n



O@)={fN—=>R|Fc>0,Ing e N:Vn>ny:0< f(n) <c-g(n)}

f(n) feO(?) Example
3n+4 O(n) c=4,ny=14
2n n c=2,n9=0

O(n)
n?+100n  O(n?) c=2,n9 =100
n++/n O(n) c=2np=1
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mneOn?

20



m n € O(n?) correct, but too imprecise:
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m n € O(n?) correct, but too imprecise:
n € O(n) and even n € ©(n).

20
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m 3n? € O(2n?)
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m 3n? € O(2n?) correct but uncommon:
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m 3n? € O(2n?) correct but uncommon:
Omit constants: 3n? € O(n?).
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m 2n* € O(n)
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m 2n? € O(n) iswrong:
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m 2n? € O(n) iswrong: % =2n — oo!
n—oo
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m O(n) C O(n?) is correct
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m O(n) C O(n?) is correct
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m O(n) C O(n?) iswrong
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m O(n) C O(n?) iswrong n ¢ Q(n?) D O(n?)
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1€ 0O(15) ?
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Quiz

1€ O(15) ? v better 1 € O(1)
2n+1€0(n) ? vV
vVneOn) ? v
VneQn) ? X
v

)
n € Q(/n) ?
Vn ¢ 6(n)

?

21
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Quiz

1€ O(15) ? v better 1 € O(1)
2n+1€09(n) ?
vneO(n) ?
VneQn) ?

n € Q(/n) ?

Vn ¢ 0(n) ?
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21



Quiz

1€ O(15) ? v better 1 € O(1)
2n+1€0(n) ? vV
vVneOn) ? v
VneQn) ? X
n € Q(/n) ? v
Vn ¢ On) ? v
O(yn) CcO(n) 2 V/
2" ¢ O(exp(n)) 2 X

21



Quiz

1€ O(15) ? v better 1 € O(1)
2n+1€0(n) ? vV
vVneOn) ? v
VneQn) ? X
n € Q(/n) ? v
Vn ¢ On) ? v
O(yn) CcO(n) 2 V/
2" ¢ O(exp(n)) 2 X

21



A good strategy?

.. Then I simply buy a new machine!
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A good strategy?

.. Then I simply buy a new machine! If today | can solve a problem of size n,
then with a 10 or 100 times faster machine | can solve ...

Komplexitat (speed x10) (speed x100)

logy n

n

n2

2n
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A good strategy?

.. Then I simply buy a new machine! If today | can solve a problem of size n,
then with a 10 or 100 times faster machine | can solve ...

Komplexitat (speed x10)

(speed x100)

logy n n — n'0
n n—10-n
n? n—3.16-n

2n

n — nt00

n — 100 -n

n—10-n

22



A good strategy? o

.. Then I simply buy a new machine! If today | can solve a problem of size n,
then with a 10 or 100 times faster machine | can solve ... °

Komplexitat (speed x10) (speed x100)

logy n n — n'0 n — nt0Y

n n—10-n n — 100 - n
n? n—-316-n n—10-n
2m n—n-+332 n—n+6.64

To see this, you set f(n') = ¢ - f(n) (c = 10 or ¢ = 100) and solve for n’
22



4.2 Asymptotic Running Time of Program Fragments

23



Asymptotic Running Times with ©

void run(int n){
for (int i = 1; i<n; ++i)
opQ0);

}

How often is op() called as a function of n?
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Asymptotic Running Times with ©

void run(int n){
for (int i = 1; i<n; ++i)
opQ0); —

}

How often is op() called as a function of n?

n—1
Y 1=n—-1€0(n)
i=1

24
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Asymptotic Running Times with ©
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Asymptotic Running Times with ©

void run(int n){
for (int i = 1; i<n; ++i){
opQ);
for (int j = i; j<m; ++j)
opQO;
}
}

How often is op() called?

27



Asymptotic Running Times with ©

void run(int n){
for (int i = 1; i<n; ++i){
opQ);
for (int j = i; j<m; ++j)
opQO;
}
}

How often is op() called?

Z(1+Zl) nzl 1—|—(n—i)):n—1+‘n(n2_1) € O(n?)

i=1 i=1 Ao —_—

27



Asymptotic Running Times with ©

void run(int n){
for (int i = 1; i<n; ++i){
opQ);
for (int j = 1; j<ixi; ++j)
opQO;
}
}

How often is op() called?
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Asymptotic Running Times with ©

void run(int n){
for (int i = 1; i<n; ++i){

opQ);
for (int j = 1; j<ixi; ++j)
opQO;
}
}

How often is op() called?

Z(Hﬁfl) §(1+z’2—1):)zi2e(~)(n3)

=1

28



Asymptotic Running Times with ©

void run(int n){
for(int i = 1; i <= n; ++i) w
for(int j = 1; j*j <= n; ++j) -)ﬂ
for(int k = n; k >= 2; --k) ] "
opQO;
}

How often is op() called as a function of n?
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Asymptotic Running Times with ©

void run(int n){
for(int 1 = 1; i <= n; ++i) X)
for(int j = 1; §%j <=n; ++j) Y™ €
for(int k = n; k >= 2; —-k)
opQO;
}

How often is op() called as a function of n?
n v

zzn_lee(zn3/2>: (V)

1=1 j5=1

29



Asymptotic Running Times with ©

int f(int n){

;;iie .(i <=\ >]n:<\ {k \011[u6)“ 3\ ‘J (h'\ € 6(\0')("‘;\
St 1* ; log. (w

) p ¥ Jj.z( )

return i;

}

How often is op() called as a function of n?

30



Asymptotic Running Times with ©

int f(int n){
i=1;
while (i <= n*n*n){
i = i*2;
opQ;
}
return i;

}

How often is op() called as a function of n?

i € N:2" < n’| € O(logyn?) = O(logn)

30



5. Appendix

Some formulas with derivation
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Why?
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Why?
Intuition

1+ ...+ 100 = (1+100) 4 (2 +99) + (3 +98) + ... + (50 + 51)
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Why?
Intuition

1+ ...+ 100 = (1+100) 4 (2 +99) + (3 +98) + ... + (50 + 51)

More formally?

32
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0

(]

0

i

:>2-zi:§)z+2(n—z‘)



0

(]

0

i

:>2-zi:§)z+2(n—z‘)
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Sums

"o, n(n+1)2n+1)

2= 6

34



Sums

é}lz _ n(n + 1)6(2n +1)

This you do not need to know by heart. But you should 4rew
thett+ts=a pu'tyuunlialt ofthrd u'e“gree.

34



Sums

How do you derive something like this?
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Sums

How do you derive something like this? Interesting Trick: On the one hand

n n n n—1

Z¢3—Z(¢—1)3:Z¢3—Zz‘3:n3,
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Sums

How do you derive something like this? Interesting Trick: On the one hand

n n n n—1
D= (-1 = "> =n’
i=0 i=1 i=0 i=0

;f’—;(z‘— 1)? :;ﬁ —;(@'— 1)3

=y i*—(i—-1P°=>3-¥-3-i+1

i=1 =1

35



Exponents and Logarithms

log,y=r<a"=y (a>0,y>0)

a®-a¥ =7 log,(z - y) =7
R log, & =7

ay Y
a”¥ =7 log, z¥ =7
log, n! =7

log, z =7 a'o%® =?
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Exponents and Logarithms
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a® - a¥ = ot log,(x - y) = log, x + log, y
“ a” Y log, R
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Exponents and Logarithms

log,y=r<a"=y (a>0,y>0)

log,(z - y) = log, z +log, y

¢ loga g = loga T — loga Yy
Yy

log, z¥ = ylog,

log, n! = Zlogi
i=1

log, © = log, a - log, « a'e” = glogra

To see the last line, replace z — a'8*
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Comparisons

10000
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Comparisons

10000

— 0

on n—oo
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Comparisons

d>1,¢>0

dn n—oo
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Comparisons

d>1,¢>0

P
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Comparisons

d>1,¢>0
nC
— — 0
dn n—oo
because
ne 210g2 ne

c-logg n—nlog, d

% - 9log, d™
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Comparisons

n
—7
log n n—oo
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Comparisons

2 ( ’31("}

log, 1

Jn

2 <&
— 7
—00

3
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Comparisons

1 2
%82,

\/ﬁ n—00
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Comparisons

1 2
%82,

\/ﬁ n—00

log, n? = 2log, n

\/ﬁ = n1/2 = 210g2 nt/? = (ﬁ)lngn

logn® _ logyn
\/ﬁ - (\/§> logs 1

which behaves because of log, n — oo for n — oo like QW

42
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Tips for Exercise 1

All Text Tasks
m Please learn a little HIpX and Markdown. It will make your (and my) life a
lot easier
m Useful Links and some tools | use

m -
o g

[ I * Detexify (OCR for ATX) m

| m

| * Online Markdown Tutorial

Task "Some Proofs"

m No need for a rigorous proof (this is not Disk Math)
m |t pays off to revisit some of the log-properties that we've covered today

4t
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Task "Prefix Sum in 2D"

m Study the Prefix Sum in 1D well and go from there
m Make sketches!

Task "Sliding Window"

m Sketches!
Task "Proofs by Induction"

m The binomial formula will be useful for the second one
Task "Karatsuba Ofman"

m Just translate the math into code
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7. Outro




General Questions?
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See you next time

Have a nice week!
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