ETH zürich

Exercise Session 03 – Recurrence, Sorting

Data Structures and Algorithms

These slides are based on those of the lecture, but were adapted and extended by the teaching assistant Adel Gavranović

Today's Schedule

Intro Follow-up Feedback for **code** expert Learning Objectives Landau Notation Landau Notation Ouiz Analyse the running time of (recursive) Functions Solving Simple Recurrence Equations Sorting Algorithms In-Class Code-Examples Outro

n.ethz.ch/~agavranovic

Exercise Session Material

▶ Adel's Webpage

▶ Mail to Adel

1

Comic of the Week

BOOK PEOPLE HATE SEEING BOOKS SORTED BY COLOR, BUT IT TURNS OUT THEY GET WAY MORE ANGRY IF YOU SORT THE PAGES BY NUMBER.

2

1. Intro

Intro

Intro

- New room
- Please tell the others!

2. Follow-up

Follow-up from last exercise session

Follow-up from last exercise session

■ None? Did I forget anything?

3. Feedback for **code** expert

■ If you want feedback for Code, please make sure to mention it at the very top of the code with "FEEDBACK PLEASE" (or similar)

- If you want feedback for Code, please make sure to mention it at the very top of the code with "FEEDBACK PLEASE" (or similar)
- I can't recommend this enough: Check out the master solution each week and double check your understanding

- If you want feedback for Code, please make sure to mention it at the very top of the code with "FEEDBACK PLEASE" (or similar)
- I can't recommend this enough: Check out the master solution each week and double check your understanding
- If I ever seem needlessly strict (do tell me!), It's only because I really want you all to pass the exam (well)

Big-O-Notation

Big-O-Notation

■ You might've seen in the lectures: for Landau-notation it doesn't matter if you write \log_2 or any other base (\log_b) since they're asymptotically equivalent! (thus we usually just write \log with no specified base)

Big-O-Notation

■ You might've seen in the lectures: for Landau-notation it doesn't matter if you write \log_2 or any other base (\log_b) since they're asymptotically equivalent! (thus we usually just write \log with no specified base)

Asymptotic Growth

Big-O-Notation

■ You might've seen in the lectures: for Landau-notation it doesn't matter if you write \log_2 or any other base (\log_b) since they're asymptotically equivalent! (thus we usually just write \log with no specified base)

Asymptotic Growth

Overall pretty bad, so we're gonna have a closer look today

Big-O-Notation

■ You might've seen in the lectures: for Landau-notation it doesn't matter if you write \log_2 or any other base (\log_b) since they're asymptotically equivalent! (thus we usually just write \log with no specified base)

Asymptotic Growth

- Overall pretty bad, so we're gonna have a closer look today
- Was the task description not clear enough?

Big-O-Notation

■ You might've seen in the lectures: for Landau-notation it doesn't matter if you write \log_2 or any other base (\log_b) since they're asymptotically equivalent! (thus we usually just write \log with no specified base)

Asymptotic Growth

- Overall pretty bad, so we're gonna have a closer look today
- Was the task description not clear enough?
- Ideally, you'd have a ranking on your cheat sheet (or know it by heart) and then you just apply some logic and analysis to determine a ranking for some given asymptotic complexities

Questions regarding **code** expert from your side?

D) Include old exac Qs for showing

4. Learning Objectives

Learning Objectives

- ☐ Be able to solve "rank-by-complexity" tasks
- ☐ Be able to set up *recurrence equations* from Code Snippets
- ☐ Be able to solve recurrence equations and solution's correctness

Give a correct definition of the set $\Theta(f)$ as compact as possible analogously to the definitions for sets $\mathcal{O}(f)$ and $\Omega(f)$

$$\Theta(f) =$$

Give a correct definition of the set $\Theta(f)$ as compact as possible analogously to the definitions for sets $\mathcal{O}(f)$ and $\Omega(f)$

$$\Theta(f) = \{g : \mathbb{N} \to \mathbb{R} \mid \exists a > 0, \ b > 0, \ n_0 \in \mathbb{N} : a \cdot f(n) \le g(n) \le b \cdot f(n) \ \forall n \ge n_0\}$$

Give a correct definition of the set $\Theta(f)$ as compact as possible analogously to the definitions for sets $\mathcal{O}(f)$ and $\Omega(f)$

$$\Theta(f) = \{g: \mathbb{N} \to \mathbb{R} \mid \exists a > 0, \ b > 0, \ n_0 \in \mathbb{N} : a \cdot f(n) \le g(n) \le b \cdot f(n) \ \forall n \ge n_0 \}$$
$$= \{g: \mathbb{N} \to \mathbb{R} \mid \exists c > 0, \ n_0 \in \mathbb{N} : \frac{1}{c} \cdot f(n) \le g(n) \le c \cdot f(n) \ \forall n \ge n_0 \}$$

Prove or disprove the following statements, where $f, g : \mathbb{N} \to \mathbb{R}^+$.

- (a) $f \in \mathcal{O}(g)$ if and only if $g \in \Omega(f)$.
- (e) $\log_a(n) \in \Theta(\log_b(n))$ for all constants $a, b \in \mathbb{N} \setminus \{1\}$
- (g) If $f_1, f_2 \in \mathcal{O}(g)$ and $f(n) := f_1(n) \cdot f_2(n)$, then $f \in \mathcal{O}(g)$.

Sorting functions: if function f is left to function g, then $f \in \mathcal{O}(g)$. Sort them

Sorting functions: if function f is left to function g, then $f \in \mathcal{O}(g)$. Sort them

$$n^5 + n$$
, $\log(n^4)$, \sqrt{n} , $\binom{n}{3}$, 2^{16} , n^n , $n!$, $\frac{2^n}{n^2}$, $\log^8(n)$, $n \log n$

Sorted:

$$2^{16}, \underbrace{\log(n^4), \log^8(n)}_{\text{4log(n)} \cdot (\dots)}, \underbrace{\sqrt{n}, n \log n}_{\text{N}}, \binom{n}{3}, n^5 + n, \underbrace{2^n}_{n^2}, \binom{n}{1}, n^n}_{\text{N}}$$

What I had on my Cheatsheet

What I had on my Cheatsheet

```
for c \in \mathbb{R}^+: c, \log \log n, \log^c n, \sqrt{n}, n, \underline{n} \log n, n^c, c^n, \underline{n}!, n^n \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \in \Theta(n^k), \quad \log(n!) \in \Theta(n \log n), \quad \underline{n}! \in \mathcal{O}(n^n)
```

17

1. Have the "ranking" on my cheatsheet

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right
- 3. Constants (no matter how large) all the way to the left

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right
- 3. Constants (no matter how large) all the way to the left
- 4. All "obviously \log "-things rather to the left

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right
- 3. Constants (no matter how large) all the way to the left
- 4. All "obviously log"-things rather to the left
- 5. Resolve/rewrite binomial stuff to polynomials

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right
- 3. Constants (no matter how large) all the way to the left
- 4. All "obviously log"-things rather to the left
- 5. Resolve/rewrite binomial stuff to polynomials
- 6. Do not forget that $\sqrt{n}=n^{\frac{1}{2}}$

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right
- 3. Constants (no matter how large) all the way to the left
- 4. All "obviously log"-things rather to the left
- 5. Resolve/rewrite binomial stuff to polynomials
- 6. Do not forget that $\sqrt{n}=n^{\frac{1}{2}}$
- 7. All obvious polynomial-in-n things rather to the right

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right
- 3. Constants (no matter how large) all the way to the left
- 4. All "obviously log"-things rather to the left
- 5. Resolve/rewrite binomial stuff to polynomials
- 6. Do not forget that $\sqrt{n}=n^{\frac{1}{2}}$
- 7. All obvious polynomial-in-n things rather to the right
- 8. Where it's not obvious:
 - Switch on your brain and make comparisons

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right
- 3. Constants (no matter how large) all the way to the left
- 4. All "obviously log"-things rather to the left
- 5. Resolve/rewrite binomial stuff to polynomials
- 6. Do not forget that $\sqrt{n}=n^{\frac{1}{2}}$
- 7. All obvious polynomial-in-n things rather to the right
- 8. Where it's not obvious:
 - Switch on your brain and make comparisons
 - (Analysis I was actually useful!)

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

Is $f \in \mathcal{O}(n^2)$, if $f(n) = \dots$?

 γ

Is $f \in \mathcal{O}(n^2)$, if $f(n) = \dots$?

- $\blacksquare n \checkmark$
- $n^2 = n^2 + 1$

```
Is f \in \mathcal{O}(n^2), if f(n) = \dots?

n \checkmark
n^2 + 1 \checkmark
\log^4(n^2)
```

21034(2)

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- $\blacksquare n \checkmark$
- $n^2 + 1$
- $\log^4(n^2)$

Is $f \in \mathcal{O}(n^2)$, if $f(n) = \dots$?

- $\blacksquare n \checkmark$
- $n^2 + 1$
- $\log^4(n^2)$
- $n \log(n^2)$
- $\blacksquare n^{\pi}$

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- $\blacksquare n \checkmark$
- $n^2 + 1$
- $\log^4(n^2)$
- $\blacksquare n \log(n^2)$ \checkmark
- $n^{\pi} \ X \ (\pi \approx 3.14 > 2)$

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- $\blacksquare n \checkmark$
- $n^2 + 1$
- $\log^4(n^2)$
- $\blacksquare n \log(n^2)$ \checkmark
- $n^{\pi} \ X \ (\pi \approx 3.14 > 2)$
- $n \cdot 2^{16}$

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- $\blacksquare n \checkmark$
- $n^2 + 1$
- $\log^4(n^2)$
- $\blacksquare n \log(n^2)$ \checkmark
- $n^{\pi} \times (\pi \approx 3.14 > 2)$
- $n \cdot 2^{16}$
- $n^2 \cdot 2^{16}$

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- $\blacksquare n \checkmark$
- $n^2 + 1$
- $\log^4(n^2)$
- $\blacksquare n \log(n^2)$ \checkmark
- $n^{\pi} \times (\pi \approx 3.14 > 2)$
- $n \cdot 2^{16}$
- $n^2 \cdot 2^{16}$
- $= 2^n$

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- $\blacksquare n \checkmark$
- $n^2 + 1$
- $\log^4(n^2)$
- $\blacksquare n \log(n^2)$ \checkmark
- $n^{\pi} \ X \ (\pi \approx 3.14 > 2)$
- $n \cdot 2^{16}$
- $n^2 \cdot 2^{16}$
- $\blacksquare 2^n$ X

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

$$n^2 + 1$$

$$\log^4(n^2)$$

$$\blacksquare n \log(n^2)$$
 \checkmark

$$n^{\pi} \times (\pi \approx 3.14 > 2)$$

$$n \cdot 2^{16}$$

$$n^2 \cdot 2^{16}$$

$$\blacksquare$$
 2^n X

Is
$$g \in \Omega(2n)$$
, if $g(n) = \dots$?

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- n **✓**
- $n^2 + 1$
- $\log^4(n^2)$
- $\blacksquare n \log(n^2)$ \checkmark
- $n^{\pi} \times (\pi \approx 3.14 > 2)$
- $n \cdot 2^{16}$
- $n^2 \cdot 2^{16}$
- \square 2^n X

Is $g \in \Omega(2n)$, if $g(n) = \dots$?

1

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- n **✓**
- $n^2 + 1$
- $\log^4(n^2) \checkmark$
- $\blacksquare n \log(n^2)$ \checkmark
- $n^{\pi} \times (\pi \approx 3.14 > 2)$
- $n \cdot 2^{16}$
- $n^2 \cdot 2^{16}$
- \blacksquare 2^n X

Is $g \in \Omega(2n)$, if $g(n) = \dots$?

■ 1 X

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

$$n^2 + 1$$

$$\log^4(n^2)$$

$$\blacksquare n \log(n^2)$$
 \checkmark

$$n^{\pi} \times (\pi \approx 3.14 > 2)$$

$$n \cdot 2^{16}$$

$$n^2 \cdot 2^{16}$$

$$\blacksquare$$
 2^n X

Is
$$g \in \Omega(2n)$$
, if $g(n) = \dots$?

$$\blacksquare$$
 n

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- n **✓**
- $n^2 + 1$
- $\log^4(n^2) \checkmark$
- $\blacksquare n \log(n^2)$ \checkmark
- $n^{\pi} \ X \ (\pi \approx 3.14 > 2)$
- $n \cdot 2^{16}$
- $n^2 \cdot 2^{16}$
- \square 2^n X

Is
$$g \in \Omega(2n)$$
, if $g(n) = \dots$?

- 1 X
- $\blacksquare n \checkmark$
- $\pi \cdot n$

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- n 🗸
- $n^2 + 1$
- $\log^4(n^2)$
- $\blacksquare n \log(n^2)$ \checkmark
- $n^{\pi} \ X \ (\pi \approx 3.14 > 2)$
- $n \cdot 2^{16}$
- $n^2 \cdot 2^{16}$
- \square 2^n X

Is
$$g \in \Omega(2n)$$
, if $g(n) = \dots$?

- 1 X
- \blacksquare n \checkmark
- $\blacksquare \pi \cdot n \checkmark$
- $\blacksquare \pi^{42} \cdot n$

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- \blacksquare n \checkmark
- $n^2 + 1$
- $\log^4(n^2)$
- $\blacksquare n \log(n^2)$ \checkmark
- $n^{\pi} \ X \ (\pi \approx 3.14 > 2)$
- $n \cdot 2^{16}$
- $n^2 \cdot 2^{16}$
- \square 2^n X

Is $g \in \Omega(2n)$, if $g(n) = \dots$?

- 1 X
- $\blacksquare n \checkmark$
- $\blacksquare \pi \cdot n \checkmark$
- $\blacksquare \pi^{42} \cdot n \checkmark$
- $\blacksquare \log(n)$

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- n **✓**
- $n^2 + 1$
- $\log^4(n^2)$
- $\blacksquare n \log(n^2)$ \checkmark
- $n^{\pi} \ X \ (\pi \approx 3.14 > 2)$
- $n \cdot 2^{16}$
- $n^2 \cdot 2^{16}$
- \blacksquare 2^n X

Is
$$g \in \Omega(2n)$$
, if $g(n) = \dots$?

- 1 X
- $\blacksquare n \checkmark$
- $\blacksquare \pi \cdot n \checkmark$
- $\blacksquare \pi^{42} \cdot n \checkmark$
- lacksquare $\log(n)$ X
- \blacksquare \sqrt{n}

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

$$n^2 + 1$$

$$\log^4(n^2)$$

$$\blacksquare n \log(n^2)$$
 \checkmark

$$n^{\pi} \times (\pi \approx 3.14 > 2)$$

$$n \cdot 2^{16}$$

$$n^2 \cdot 2^{16}$$

$$\blacksquare$$
 2^n X

Is
$$g \in \Omega(2n)$$
, if $g(n) = \dots$?

$$\blacksquare n \checkmark$$

$$\blacksquare \pi \cdot n \checkmark$$

$$\blacksquare \pi^{42} \cdot n \checkmark$$

$$lacksquare$$
 $\log(n)$ X

$$\blacksquare$$
 \sqrt{n} X

7. Analyse the running time of (recursive) Functions

Analysis

```
for(unsigned i = 1; i <= n/3; i += 3){
  for(unsigned j = 1; j <= i; ++j){
    f();
    }
}</pre>
```

Analysis

How many calls to f()?

```
for(unsigned i = 1; i <= n/3; i += 3){
  for(unsigned j = 1; j <= i; ++j){
    f();
  }
}</pre>
```

The code fragment implies $\Theta(n^2)$ calls to f(): the outer loop is executed n/9 times and the inner loop contains i calls to f()

```
for(unsigned i = 0; i < n; ++i){
  for(unsigned j = 100; j*j >= 1; --j){
    f();
}
for(unsigned k = 1; k <= n; k *= 2){
  f();
}</pre>
```

```
for(unsigned i = 0; i < n; ++i){
  for(unsigned j = 100; j*j >= 1; --j){
    f();
}
for(unsigned k = 1; k <= n; k *= 2){
  f();
}</pre>
```

We can ignore the first inner loop because it contains only a constant number of calls to f()

```
for(unsigned i = 0; i < n; ++i){
  for(unsigned j = 100; j*j = r; ++j){
    f();
  }
  for(unsigned k = 1; k <= n; k *= 2){
    f();
  }
}</pre>
```

We can ignore the first inner loop because it contains only a constant number of calls to f()

The second inner loop contains $\lfloor \log_2(n) \rfloor + 1$ calls to f(). Summing up yields $\Theta(n \log(n))$ calls.

```
void g(unsigned n){
  if (n>0){
    g(n-1);
    f();
}
```

```
M(")
void g(unsigned n){
                                              = M(n-1) + 1
  if (n>0){
                                             = M(n-2) + A
\rightarrow g(n-1);
M(n) = M(n-1) + 1 = M(n-2) + 2 = \dots = M(0) + n = n \in \Theta(n)
"how many calls to f() if we call g(n)"
```

```
// pre: n is a power of 2
// n = 2^k &= (-7e(n)
void g(int n){
  if(n>0){
   g(n/2); \leftarrow t_{n}
   f()
```

$$M(n) = M(\frac{n}{2}) + 1$$

$$= 2M(\frac{n}{4}) + 2$$

$$= \vdots$$

$$= M(\frac{N}{2^{k}}) + k$$

$$= M(\frac{N}{2^{k}}) + k$$

$$= M(4)$$

$$= (-j_{2}(n)) \in \Theta(1-j_{4}(n))$$

$$= (-j_{2}(n)) \in \Theta(1-j_{4}(n))$$

$$= (-j_{2}(n)) \in \Theta(1-j_{4}(n))$$

```
// pre: n is a power of 2
// n = 2^k
void g(int n){
   if(n>0){
      g(n/2);
      f()
   }
}
```

$$M(n) = 1 + M(n/2) = 1 + 1 + M(n/4) = k + M(n/2^k) \in \Theta(\log n)$$

```
M(n) = 2M(\frac{n}{2}) + 2
= 2 \cdot (2M(\frac{n}{4}) + 2) + 2
// pre: n is a power of 2
void g(int n){
 if (n>0){
   f();
  g(n/2);
   f();
    g(n/2);
```

```
// pre: n is a power of 2
void g(int n){
  if (n>0){
    f();
    g(n/2);
    f();
    g(n/2);
}
```

$$M(n) = 2M\left(\frac{n}{2}\right) + 2 = 4M\left(\frac{n}{4}\right) + 4 + 2 = 8M\left(\frac{n}{8}\right) + 8 + 4$$
$$= n + n/2 + \dots + 2 \in \Theta(n)$$

```
// pre: n is a power of 2
// n = 2^k
                       M(n) = 2M(2) + ~
void g(int n){
                                                /lexpand
 if (n>0) {
 g(n/2);
 g(n/2);
 for (int i = 0; i < n; ++i){
  Guess (Intitu niog(s)
```

```
// pre: n is a power of 2
   n = 2^k
void g(int n){
 if (n>0) {
   g(n/2);
   g(n/2);
 for (int i = 0; i < n; ++i){
   f();
 M(n) = 2M(n/2) + n = 4M(n/4) + n + 2n/2 = \dots = (k+1)n \in \Theta(n \log n)
```

```
void g(unsigned n){
  for (unsigned i = 0; i<n; ++i){
    g(i);
}
  f();
}</pre>
M (n+i) = M(
```

```
void g(unsigned n){
   for (unsigned i = 0; i < n; ++i){
      g(i)
   }
   f();
}</pre>
```

```
void g(unsigned n){
    for (unsigned i = 0; i<n; ++i){
        g(i)
    }
    f();
}
T(0) = 1
T(n) = 1 + \sum_{i=0}^{n-1} T(i)
```

Hypothesis: $T(n) = 2^n$.

Induction

Hypothesis: $T(n)=2^n$. Induction step: $\mathbf{Z}^n+\mathbf{Z}^{n-1}+\cdots \mathbf{Z}$ $\mathbf{Z}^n+\mathbf{Z}^{n-1}+\cdots \mathbf{Z}^n$ $=1+2^n-1=2^n$

```
void g(unsigned n){
  for (unsigned i = 0; i<n; ++i){
    g(i)
  }
  f();
}</pre>
```

You can also see it directly:

$$T(n) = 1 + \sum_{i=0}^{n-1} T(i)$$

$$\Rightarrow T(n-1) = 1 + \sum_{i=0}^{n-2} T(i)$$

$$\Rightarrow T(n) = T(n-1) + T(n-1) = 2T(n-1)$$

8. Solving Simple Recurrence Equations

Recurrence Equation

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + \frac{n}{2} + 1, & n > 1\\ 3 & n = 1 \end{cases}$$

Specify a closed (non-recursive), simple formula for T(n) and prove it using mathematical induction. Assume that n is a power of 2.

Recurrence Equation

 \Rightarrow Assumption $T(n) = 4n + \frac{n}{2}\log_2 n - 1$

$$T(2^{k}) = 2T(2^{k-1}) + 2^{k}/2 + 1$$

$$= 2(2(T(2^{k-2}) + 2^{k-1}/2 + 1) + 2^{k}/2 + 1 = \dots$$

$$= 2^{k}T(2^{k-k}) + \underbrace{2^{k}/2 + \dots + 2^{k}/2}_{k} + 1 + 2 + \dots + 2^{k-1}$$

$$= 3n + \frac{n}{2}\log_{2}n + n - 1$$

Induction

- 1. Hypothesis $T(n) = f(n) := 4n + \frac{n}{2} \log_2 n 1$
- 2. Base Case T(1) = 3 = f(1) = 4 1.
- 3. Step $T(n) = f(n) \longrightarrow T(2 \cdot n) = f(2n)$ ($n = 2^k$ for some $k \in \mathbb{N}$):

$$\begin{split} T(2n) &= 2T(n) + n + 1 \\ &\stackrel{i.h.}{=} 2(4n + \frac{n}{2}\log_2 n - 1) + n + 1 \\ &= 8n + n\log_2 n - 2 + n + 1 \\ &= 8n + n\log_2 n + n\log_2 2 - 1 \\ &= 8n + n\log_2 2n - 1 \\ &= f(2n). \end{split}$$

Master Method

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & n > 1\\ f(1) & n = 1 \end{cases} \quad (a, b \in \mathbb{N}^+)$$

- 1. $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0 \Longrightarrow T(n) \in \Theta(n^{\log_b a})$
- 2. $f(n) = \Theta(n^{\log_b a}) \Longrightarrow T(n) \in \Theta(n^{\log_b a} \log n)$
- 3. $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 and all sufficiently large $n \Longrightarrow T(n) \in \Theta(f(n))$

Equation must be convertible into form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad (a \ge 1, b > 1)$$

where.

: Number of Subproblems : Division Quotient

f(n): Division Quotient f(n): Division Quotient

Then we can proceed:

 Convert the Recurrence Equation into the form above
 Calculate K: ≠ log, a 3. Make case distinction ($\varepsilon > 0$):

$$\textbf{f} \in \begin{cases} \mathcal{O} \left(\textbf{n}^{\bullet - \varepsilon} \right) & \Longrightarrow T(n) \in \Theta \left(\textbf{n}^{\bullet} \right) \\ \Theta \left(\textbf{n}^{\bullet} \right) & \Longrightarrow T(n) \in \Theta \left(\textbf{n}^{\bullet} \log(n) \right) \\ \Omega \left(\textbf{n}^{\bullet \bullet + \varepsilon} \right) & \land af(\frac{n}{b}) \leq cf(n), \ 0 < c < 1 \\ \Longrightarrow T(n) \in \Theta(f(n)) \end{cases}$$

Maximum Subarray / Mergesort

$$T(n) = 2T(n/2) + \Theta(n)$$

$$A = 2$$

$$b = 2$$

$$f(n) \in \Theta(n)$$

$$|o_{j2}(2)| = 1$$

$$f \in G(n^4) \Longrightarrow$$

$$T(n) \in \theta(n|o_jG)$$

Maximum Subarray / Mergesort

$$T(n)=2T(n/2)+\Theta(n)$$

$$a=2,b=2,f(n)=cn=cn^1=cn^{\log_22}\xrightarrow{\text{[2]}}T(n)=\Theta(n\log n)$$

Naive Matrix Multiplication Divide & Conquer¹

$$T(n) = 8T(n/2) + \Theta(n^2)$$

¹Treated in the course later on

Naive Matrix Multiplication Divide & Conquer¹

$$T(n) = 8T(n/2) + \Theta(n^2)$$

$$a=8,b=2\text{, }f(n)=cn^2\in\mathcal{O}(n^{\log_28-1})\overset{[1]}{\Longrightarrow}T(n)\in\Theta(n^3)$$

¹Treated in the course later on

Strassens Matrix Multiplication Divide & Conquer²

$$T(n) = 7T(n/2) + \Theta(n^2)$$

²Treated in the course later on

Strassens Matrix Multiplication Divide & Conquer²

$$T(n) = 7T(n/2) + \Theta(n^2)$$

$$a=7,b=2$$
, $f(n)=cn^2\in\mathcal{O}(n^{\log_27-\epsilon})\stackrel{[1]}{\Longrightarrow}T(n)\in\Theta(n^{\log_27})\approx\Theta(n^{2.8})$

²Treated in the course later on

$$T(n) = 2T(n/4) + \Theta(n)$$

$$T(n) = 2T(n/4) + \Theta(n)$$
 $a = 2, b = 4, f(n) = cn \in \Omega(n^{\log_4 2 + 0.5}), 2f(n/4) = c\frac{n}{2} \le \frac{c}{2}n^1 \stackrel{[3]}{\Longrightarrow} T(n) \in \Theta(n)$

$$T(n) = 2T(n/4) + \Theta(n^2)$$

$$T(n) = 2T(n/4) + \Theta(n^2)$$
 $a = 2, b = 4, f(n) = cn^2 \in \Omega(n^{\log_4 2 + 1.5}), 2f(n/4) = \frac{n^2}{8} \le \frac{1}{8}n^2 \stackrel{[3]}{\Longrightarrow} T(n) \in \Theta(n^2)$

Equation must be convertible into form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad (a \ge 1, b > 1)$$

Equation must be convertible into form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad (a \ge 1, b > 1)$$

where:

a : Number of Subproblems

1/b : Division Quotient

f(n): Div- and Summing Costs

Equation must be convertible into form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad (a \ge 1, b > 1)$$

where:

a : Number of Subproblems

1/b : Division Quotient

f(n): Div- and Summing Costs

Then we can proceed:

1. Convert the Recurrence Equation into the form above

Equation must be convertible into form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad (a \ge 1, b > 1)$$

where:

a : Number of Subproblems

1/b : Division Quotient

f(n): Div- and Summing Costs

Then we can proceed:

- Convert the Recurrence Equation into the form above
- 2. Calculate $K := \log_b a$

Equation must be convertible into form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad (a \ge 1, b > 1)$$

where:

a : Number of Subproblems

1/b : Division Quotient

f(n): Div- and Summing Costs

Then we can proceed:

- Convert the Recurrence Equation into the form above
- 2. Calculate $K := \log_b a$

3. Make case distinction ($\varepsilon > 0$):

Equation must be convertible into form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad (a \ge 1, b > 1)$$

where:

a: Number of Subproblems

1/b : Division Quotient

f(n): Div- and Summing Costs

Then we can proceed:

 Convert the Recurrence Equation into the form above

2. Calculate $K : \neq \log_b a$

3. Make case distinction ($\varepsilon > 0$):

$$f \in \begin{cases} \mathcal{O}\left(n^{\mathbf{K}-\varepsilon}\right) & \Longrightarrow T(n) \in \Theta\left(n^{\mathbf{K}}\right) \\ \Theta\left(n^{\mathbf{K}}\right) & \Longrightarrow T(n) \in \Theta\left(n^{\mathbf{K}}\log(n)\right) \\ \Omega\left(n^{\mathbf{K}+\varepsilon}\right) & \bigwedge af\left(\frac{n}{b}\right) \leq cf(n), \ 0 < c < 1 \\ \Longrightarrow T(n) \in \Theta(f(n)) \end{cases}$$

Personal Approach to "Solving RecEqs"

"Plug and Chuck"-Approach

- 1. Expand few times
- 2. Notice patterns (careful with multiplications on of T(n))
- 3. Write down explicitly
- 4. Formulate explicit formula f(n)
- 5. Prove via induction (starting at f(1))

Personal Approach to "Calls of f()"

- 1. Loops: just multiply
- 2. If too hard: usually $\Theta(2^n)$
- 3. Just brute-force calculate $g(0), g(1), g(2), g(3), \ldots$ and try to identify trends
- 4. If necessary, simply set up and solve RecEqs
- 5. If asked provide proof (by induction)

9. Sorting Algorithms

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

5	4	0	3	2
14	4	5	3	2
1	2	5	3	4
1	2	3	5	4
1	2	3	4	5

5	4	1	3	2
4	1	3	2	5
1	3	2	4	5
1	2	3	4	5

5	4	1	3	2
4	5	1	3	2
1	4	5	3	2
1	3	4	5	2
1	2	3	4	5

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

5	4	1	3	2
1	4	5	3	2
1	2	5	3	4
1	2	3	5	4
1	2	3	4	5

5	4	1	3	2
4	1	3	2	5
1	3	2	4	5
1	2	3	4	5

5	4	1	3	2
4	5	1	3	2
1	4	5	3	2
1	3	4	5	2
1	2	3	4	5

selection

45

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

5	4	1	3	2
1	4	5	3	2
1	2	5	3	4
1	2	3	5	4
1	2	3	4	5

5	4	1	3	2
4	1	3	2	5
1	3	2	4	5
1	2	3	4	5

5	4	1	3	2
4	5	1	3	2
1	4	5	3	2
1	3	4	5	2
1	2	3	4	5

selection

bubblesort

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

5	4	1	3	2
1	4	5	3	2
1	2	5	3	4
1	2	3	5	4
1	2	3	4	5

5	4	1	3	2
4	1	3	2	5
1	3	2	4	5
1	2	3	4	5

5	4	1	3	2
4	5	1	3	2
1	4	5	3	2
1	3	4	5	2
1	2	3	4	5

selection

bubblesort

insertion

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	8	9	10	15	13
2	7	5	6	3	8	1	10	15	13
					8				

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	8	9	10	15	13
<u>2</u>	7	5	6	3					

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	8	9	10	15	13
<u>2</u>	7	5	6	3	8				

8	7	10	15	3	6	9	5	2	13
	7								
2	7	5	6	3					
3	3	5	6	1_	8	2	10	12	13

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	8	9	10	15	13
<u>2</u>	7	5	6	3	8	9	10	15	13
<u>2</u>	3	5	6	7					

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	8	9	10	15	13
<u>2</u>	7	5	6	3	8	9	10	15	13
<u>2</u>	3	5	6	7	8				

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	8	9	10	15	13
<u>2</u>	7	5	6	3	8	9	10	15	13
<u>2</u>	3	5	6	7	8	9			

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	<u>8</u>	9	10	15	13
<u>2</u>	7	5	6	3	<u>8</u>	9	10	15	13
<u>2</u>	3	5	6	7	<u>8</u>	9	<u>1</u> 0	15	13

Stable and in-situ sorting algorithms

■ Stable sorting algorithms don't change the relative position of two equal elements.

not stable

Stable and in-situ sorting algorithms

■ Stable sorting algorithms don't change the relative position of two equal elements.

Stable and in-situ sorting algorithms

Stable sorting algorithms don't change the relative position of two equal elements.

■ In-situ algorithms require only a constant amount of additional memory. Which of the sorting algorithms are stable? Which are in-situ? (How) can we make them stable / in-situ?

Implement (Binary) Search from Scratch

→ **code** expert

Use the result to implement binary insertion sort.

 \longrightarrow **code** expert

11. Outro

General Questions?

See you next time

Have a nice week!