Exercise Session 03 — Recurrence, Sorting

Data Structures and Algorithms
These slides are based on those of the lecture, but were adapted and

extended by the teaching assistant Adel Gavranovic

Today’s Schedule

Intro

Follow-up

Feedback for code expert
Learning Objectives
Landau Notation

Landau Notation Quiz
Analyse the running time of (recur-

sive) Functions
Solving Simple Recurrence Equa-

tions

Sorting Algorithms
In-Class Code-Examples
Qutro

n.ethz.ch/~agavranovic

https://n.ethz.ch/~agavranovic/download/Datastructures-and-Algorithms-FS2024/
https://n.ethz.ch/~agavranovic
mailto:adel.gavranovic@inf.ethz.ch

Comic of the Week

NI i leﬂ‘ i

=

BOOK PEOPLE HATE SEEING BOOKS SORTED BY
COLOR, BUT IT TURNS OUT THEY GET LAY MORE
ANGRY IF YOU SORT THE PAGES BY NUMBER.

https://xkcd.com/2791/

1. Intro

Intro

B New room
m Please tell the others!

2. Follow-up

Follow-up from last exercise session

m None? Did | forget anything?

3. Feedback for code expert

General things regarding code expert

m If you want feedback for Code, please make sure to mention it at the
very top of the code with "FEEDBACK PLEASE" (or similar)

m | can't recommend this enough: Check out the master solution each
week and double check your understanding

m If | ever seem needlessly strict (do tell me!), It's only because | really
want you all to pass the exam (well)

Specific things regarding code expert

Big-O-Notation

m You might've seen in the lectures: for Landau-notation it doesn’t matter
if you write log, or any other base (log;) since they're asymptotically
equivalent! (thus we usually just write log with no specified base)

Asymptotic Growth
m Overall pretty bad, so we're gonna have a closer look today
m Was the task description not clear enough?

m Ideally, you'd have a ranking on your cheat sheet (or know it by heart)
and then you just apply some logic and analysis to determine a ranking
for some given asymptotic complexities

Questions regarding code expert from your side?

4. Learning Objectives

Learning Objectives

[J Be able to solve "rank-by-complexity" tasks
[J Be able to set up recurrence equations from Code Snippets
[J Be able to solve recurrence equations and solution’s correctness

5. Landau Notation

Landau Notation

Give a correct definition of the set ©(f) as compact as possible analogously
to the definitions for sets O(f) and Q(f)

O(f) = {g: N=>R|Fa>0,b>0,ng€N:a- f(n)

<g(n
= {9:N=>R[Je>0,neN:1-f(n)<gn)<c

) <b-f(n)Vn>ng}
- f(n) Vn > no}

Landau Notation

Prove or disprove the following statements, where f,g : N — R*.
(@) f € O(g)ifand only if g € Q(f).

(e) log,(n) € ©(log,(n)) for all constants a,b € N\ {1}

(8) If f1, f2 € O(g) and f(n) := fi(n) - fo(n), then f € O(g).

Landau Notation

Sorting functions: if function f is left to function g, then f € O(g). Sort them

277,
n° +n, log(n*), vn, (Z), 216 pm nl pot log®(n), nlogn

Sorted:

n

p
2%, log(n*), log®(n), v/n, nlogn, (Z) n’+n, —5, nl, n"
n

What | had on my Cheatsheet

force Rt :

¢, loglogn,log®n, v/n,n,nlogn,n c" nl,n
))) V)))) b

(Z) - ﬁ'—k)! € O(n*), log(n!) € O(nlogn),

n

nl e O(n")

My personal approach to solving them

Have the "ranking" on my cheatsheet

Move all entries with exponents dependend on n to the right
Constants (no matter how large) all the way to the left

All "obviously log"-things rather to the left

Resolve/rewrite binomial stuff to polynomials

Do not forget that \/n = nz

All obvious polynomial-in-n things rather to the right

Where it's not obvious:

© N OB

m Switch on your brain and make comparisons
m (Analysis | was actually useful!)

6. Landau Notation Quiz

Landau Notation Quiz

s f € Om2), if f(n) =...? Is g € Q(2n), if g(n) = ...?
mn v mlX
mn’+1 v En v
m log*(n?) v mr-n v
m nlog(n?) v w20 v/
mn" X(r~3.14 > 2) m log(n) X
mn-2 v m/n X
mn?. 200 v/
m2" X

7. Analyse the running time of (recursive)
Functions

Analysis

How many callsto £()?

for(unsigned i = 1; i <= n/3; i += 3){
for(unsigned j = 1; j <= i; ++j){
£0;

}

¥

The code fragment implies ©(n?) calls to £ (): the outer loop is executed
n/9 times and the inner loop contains i calls to £ ()

22

How many callsto £()?

for(unsigned i = 0; i < nj; ++i){
for(unsigned j = 100; jxj >= 1; --j){
£0;
}
for(unsigned k = 1; k <= n; k *x= 2){
£0;
}
}

We can ignore the first inner loop because it contains only a constant
number of calls to £ ()

The second inner loop contains |log,(n)| + 1 calls to £(). Summing up
yields ©(nlog(n)) calls.

23

How many callsto £()?

void g(unsigned n){
if (n>0){
g(n-1);
£0;

24

How many callsto £()?

// pre: n is a power of 2
// n=2%
void g(int n){
if (n>0){
g(n/2);
£O
}
}

M(n)=1+M(n/2) =1+1+ M(n/4) =k + M(n/2") € ©(logn)

25

How many callsto £()?

// pre: n is a power of 2
void g(int n){
if (n>0){
£0;
g(n/2);
£0;
g(n/2);
}
}

M(n)—ZM(Z)+2—4M<Z)+4+2—8M(Z>+8+4
=n+n/2+..+2€0(n)

26

How many callsto £()?

// pre: n is a power of 2
// n =27k
void g(int n){
if (n>0){
g(n/2);
g(n/2);
}
for (int 1 = 0; i < n; ++i){
£0;
}
}

M(n) =2M(n/2) +n=4M(n/4) +n+2n/2 =

.= (k+1)n € O(nlogn)

27

How many callsto £()?

void g(unsigned n){
for (unsigned i = 0; i<n ; ++i){
g(i)
}
£O;

T(0) =1
T(n) =1+ T()

Hypothesis: T'(n) = 2".

28

Induction

Hypothesis: T'(n) = 2.
Induction step:

n—1
T(n)=1+> 2
1=0

142" —1=2"

29

How many callsto £()?

void g(unsigned n){
for (unsigned i = 0; i<n ; ++i){
g(i)
}
£0O;
}

You can also see it directly:

T(n)zl—i—éT(i)
:>T(n—1):1+§T(i)
:T(n):T(n:1)+T(n—1):2T(n—1)

30

8. Solving Simple Recurrence Equations

Recurrence Equation

27 (2 241 1
T(n): (2)+2+ ! n=
3 n=1

Specify a closed (non-recursive), simple formula for T'(n) and prove it using
mathematical induction. Assume that n is a power of 2.

32

Recurrence Equation

T(2F) = 2T (2" 1) + 28 /2 + 1
=2(2(T (2" + 224 1) +2F /241 = ..
=2Fr(2" Ry 22 L+ 2k /241 2+ L 28
k
n
:3n+§10g2n+n— 1

= Assumption T'(n) = 4n + 5 logyn — 1

33

Induction

1. Hypothesis T'(n) = f(n
2. Base Case T(1) =3 =
3. StepT'(n) = f(n) —

= 4n +

(1) =4
(2-n)

5logyn —1

— 1.
= f(2n) (n = 2* for some k € N):

T(2n)=2T(n)+n+1
i 2(4n+glog2n—)+n+1

= 8n +
= 8n +
= 8n +

nlogon —2+n+1
nlog,n +nlog,2 — 1
nlog,2n — 1

— f(2n).

34

Master Method

_ faT(3)+ f(n) n>1 .
T(n)—{f(l) o_, [(abeNT)
1. f(n) = O(n'°827¢) for some constant e > 0 = T'(n) € O(n'°%:2)
2. f(n) = O(n'& %) = T(n) € O(n'°&*1ogn)

3. f(n) = Q(n'°8» 7<) for some constant e > 0, and if af(%) < ¢f(n) for some
constant ¢ < 1 and all sufficiently large n = T'(n) € ©(f(n))

35

Examples

Maximum Subarray / Mergesort

T(n) =2T(n/2) + O(n)

a=2,b=2, f(n)=cn=cn' = cn'e2? SLN T(n) =0O(nlogn)

36

Examples

Naive Matrix Multiplication Divide & Conquer’

T(n) =8T(n/2) + O(n?)

a=8,b=2, f(n)=cn? e O(n'e2871) SR T(n) € ©(n®)

Treated in the course later on

37

Examples

Strassens Matrix Multiplication Divide & Conquer?

T(n) =7T(n/2) + 6(n?)

a="T>b=2 f(n)=cn?e€ O(n'e7¢) EEN T(n) € O(n'*27) ~ O(n2?)

2Treated in the course later on

38

Examples

a=2,b=4, f(n) =cn € Q(n'°&2t05) 2f(n/4) =c

T(n) =2T(n/4) + O(n)

o3

39

Examples

T(n) € ©(n?)

T(n) = 2T(n/4) + O (n?)

40

What | had on my Cheatsheet

Equation must be convertible into form
T(n)=a- T(>+f(), (@>1,b>1)

where:

a : Number of Subproblems 3. Make case distinction (¢ > 0):
1/b : Division Quotient
f(n) :Div-and Summing Costs

K—¢
Then we can proceed: O(nK) = T(n) €6(n K)
1. Convert the Recurrence fe 6(n) = T(n) € O(n"log(n))
Equation into the form above Q(TLK“) Naf(3) <cf(n),0<c<1

2. Calculate K :=log, a = T(n) € ©(f(n))

41

Personal Approach to "Solving RecEgs"

"Plug and Chuck"-Approach

1
2
3
4
5

. Expand few times

. Notice patterns (careful with multiplications on of T'(n))
. Write down explicitly

. Formulate explicit formula f(n)

. Prove via induction (starting at f(1))

42

Personal Approach to "Calls of £()"

1. Loops: just multiply
. If too hard: usually ©(2")

N

trends
4. If necessary, simply set up and solve RecEqgs
5. If asked provide proof (by induction)

Just brute-force calculate ¢(0), g(1), g(2), g(3), . ..

and try to identify

43

9. Sorting Algorithms

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

5 4 1 3 2 5 4 1 3 2 5 4 1 3 2
1T 4 5 3 2 4 1 3 25 4 5 1 3 2
1T 2 5 3 4 1T 3 2 45 1T 4 5 3 2
1T 2 3 5 4 1T 2 3 45 1T 3 4 5 2
1 2 3 4 5 1 2 3 4 5

selection bubblesort insertion

Quiz

Execute two further iterations of the algorithm Quicksort on the following array.
The first element of the (sub-)array serves as the pivot.

3 /7 110 |15 | 3 6 9 5 2 | 13
2 / 5 3 8 9 |10 | 15 | 13
2 | 7/ 3 8 | 9 |10 | 15 | 13
2 | 3 7 8 9 10|15 | 13

46

Stable and in-situ sorting algorithms

m Stable sorting algorithms don’t change the relative position of two equal
elements.

5 2 6 6 8 4

S~ not stable

5 2 6 6 8 4
S~ stable

2 4 5 6 6 8

m In-situ algorithms require only a constant amount of additional memory.

Which of the sorting algorithms are stable? Which are in-situ? (How) can we
make them stable / in-situ?

47

10. In-Class Code-Examples

Implement (Binary) Search from Scratch

— code expert

Use the result to implement binary insertion sort.
— code expert

48

11. Outro

General Questions?

50

See you next time

Have a nice week!

51

	Intro
	Follow-up
	Feedback for codeexpertcolorcode expert
	Learning Objectives
	Landau Notation
	Landau Notation Quiz
	Analyse the running time of (recursive) Functions
	Solving Simple Recurrence Equations
	Sorting Algorithms
	In-Class Code-Examples
	Outro

