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1. Intro




Intro

m Welcome back!



2. Follow-up




Follow-up from last exercise session

m Red-Black tree from last session (S06)



Questions regarding code expert from your side?



3. Learning Objectives




Learning Objectives

Quadtrees Functors
[0 Understand what quadtrees are [0 Know what Functors are
where they are used [ Understand how Functors work
[J Understand the minimization [1 Know where and how to use
problem behind quadtrees Functors
Red-Black Trees Lambdas
O Be able to perform basic [J Know what Lambdas are
operations on the most [J Understand how Lambdas work
common trees, in particular 00 Know where and how to use

Red-Black trees Lambdas



4. Quadtrees




Quadtrees

Quadtrees are trees where each node has at most four children.

Main application: Image processing.



Quadtrees for Image Compression

Insight: (1) Divide image recursively into four regions, (2) map the regions to
nodes in a quadtree und (3) assign each leaf the average color of its region.




Quadtrees for Image Compression

When and where to stop the recursion?

Too early? Is this better? Question: Should we stop when each node is
mapped to a pixel? Answer: We would get the original image but gain no
storage efficiency.



Quadtrees for Image Compression

We want

m as close approximation as possible, und
m as few nodes as possible.

This can be expressed as an optimization problem

Hy(T,y) =~ |LT)] + > My — el

v L(T
Number of leaves reL(T)

Cumulative approximation error of all leaves

where T is a quadtree, y is the image data, and v > 0 is a regularization

parameter. For a given v we seek the optimal solution argmin, H. (T, y).



Quadtrees for Image Compression

Hy(Tyy) ==~ |L(T)] + > Ny — w2

v (T
Number of leaves re )

Cumulative approximation error of all leaves

Question: What is the effect of a low value of 4?

Answer: Improves the approximation at the expense of increasing the size
of the quadtree.



Algorithm: Minimize(y,r,7)

Input: Image data y € R, rectangle r C S, regularization v > 0.

Output: ming 1|L(T)| + 1y — pur(r)|

if |7| = 0 then return 0

m =+ P ger (Ys — MT)Q

if 7| > 1 then
Split 7 into 7,71, Tul, Tur
mq <— Minimize(y, 1y, v); me < Minimize(y, 7., y)
ms < Minimize(y, 7y, y); ma < Minimize(y, 7y, y)
m' < mq +mo +ms+my

else

L m/ < oo
if m" <m then m + m/
return m



Code-Example

Quadtrees on code expert
m Region-Point Quadtree


https://expert.ethz.ch/solve/BDAvNNvMpm9EMF7Qb

6. Higher Order Functions




Motivation

m Overarching goal: make code generic, thus reusable
m Templates so far: make code parametric in the data it operates on, e.g.

m Pair<T> for all types T
m print<C> for all iterable containers C

m Now: make code parametric in the algorithms it uses, e.g.

m filter(container, predicate)

B apply(signal, transformation/filter)

B leader_election(participants, protocol)

B navigation_system(map, shortest_path_algorithm)
B Button("Save").onClick(handle_click_event)



Callables and Higher-Order Functions

m pred must be callable

// generic filter function (applicable, invocable), i.e.,
template <typename C, typename P> something function-like
C filter(const C& src_data, P pred) { mInCit:

C data;

m free or member function

for (const auto& e : src_data) ® lambda function

if (pred(e)) data.push_back(e); m functor (object with
operator())
return data; ®m std::function object
} m function pointers [not
discussed]

Functions taking or returning functions are called higher-order functions.
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C+-+Functors

// generic filter function
template <typename C, typename P>
C filter(const C& src_data, P pred) {
C data;
for (const auto& e : src_data)
if (pred(e)) data.push_back(e);
return data;

}

// stateful predicate as functor
template <typename T>
struct AtLeast {

T min;

AtLeast(T m): min(m) {};

bool operator() (T i) comst {
return min <= i;
i
15

m A functor

m is it's an object that implements
operator ()

m combines state (since an object)
with callability (with the
operator())

m Objects of type AtLeast<T> are
callable with one T argument.

std::vector<int> data = {-1,0,1,2,-2,4,5,-3};
selectionl = filter(data, AtLeast(-1));

// = {-1,0,1,2,4,5}

selection2 = filter(data, AtLeast(4));

// = {4,5%}
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Lambda Expressions Translate to Functors

std: :vector<int> data = {-1,0,1,2,-2,4,5,-3};

filter(data, [](int e) { return -2 <= e; });
filter(data, [](int e) { return e != 0; });

auto selectionl
auto selection2

struct lambdal {
bool operator() (int e) const {

return -2 <= e: m C+-+compiler generates
¥ functors from lambda

i .
expressions
struct lambda2 { .
bool operator() (int e) const { m Lambdas are not essential,

. return e != 0; but “merely” convenient
B
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Lambda Expression Syntax

Most general shape:

ley,...,e,] (Thxq,....Tyx,) -> R { stmt }
- ~N ~ ~N S S~
captures parameters return body
type

Captures declare context variables the lambda’s body can access. Syntax examples:

[1 no context access

[x] x is copied (and const)

[&x] x is accessible by reference

[x, &yl xis copied, y is referenced

[&] all necessary variables are automatically referenced

[=] all necessary variables are automatically copied

[&, x] all necessary variables are referenced, except x, which is copied
[=, &x] all necessary variables are copied, except x, which is referenced
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Functors

1. Write down the functor that
corresponds to the lambda

2. Use the functor in the filter(...)
expression

Solution

class lambdal {
unsigned& count;
int min;
public:
lambdal (unsigned& c, int m):
count(c), min(m) {}
bool operator() (int e) const {
++count;
return min <= e;
}
175

unsigned count = 0;

int min = 3;

std::vector<int> data = {4,-2,0};

data = filter(data, [&, min] (int e) {
++count; return min <= e;

B;

unsigned count = 0;
int min = 3;
std: :vector<int> data = {4,-2,0};

data = filter(data, lambdal(count, min));
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Functors

m Observe that the lambda now uses the auto type placeholder for its
argument

data = filter(data, [](auto e) { return 0 <= e; });

m Question: How is this reflected by the generated functor?

m Solution:

class lambda2 {
public:
lambda2() {}

template <typename T>
bool operator() (T e) const {
return 0 <= e;
}
ks

25



6.1 Function Signature Notation

not exam relevant
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Function Signature Notation

m |n the context of functional programming, function signatures are often
expressed in a mathematics-inspired notation

m Convention today: upper-case letters denote type parameters, lower-case
names denote concrete types

m Examples:

m f1: A—int function from any type to integer

B fy: Ax Ax A— bool function from three A’s to boolean

m f3:Ax (A— B)— B "higher-order function" (with two arguments)

B fy:vec<A> X (A — B) — vec<B> higher-order function involving vectors

B f5:(AxA—B)xA— ((A— B)— bool) takingand returning a
function
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Function Signature Notation: Example 1

m Task: Write down a function with signature f, : A x A — bool
m Solution:

template <typename A>
bool eq(A al, A a2) {
return al == a2;

}
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Function Signature Notation: Example 2

m Task: Write down a function with signature f, : A x (A — B) — B
m Solution 1:

template <typename A, typename F>
auto applyl(A a, F a_to_b) {
return a_to_b(a);

}
int i1 = applyi('a', [l(char c¢) { return c - 65; });
m Observations

m type parameter B is only implicitly given, as F's return type
m template type parameters inferred at call-site
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Function Signature Notation: Example 2

m Task: Write down a function with signature f, : Ax (A — B) — B
m Solution 2:

template <typename A, typename B>
B apply2(A a, std::function<B(A)> a_to_b) {
return a_to_b(a);

}
int i2 = apply2('a', std::function([](char c) { return c - 65; }));
m Observations

m type parameter B is explicit
m but we need to wrap the lambda in a std: : function
m template type parameters inferred at call-site
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Function Signature Notation: Example 2

m Task: Write down a function with signature f,: A x (A — B) — B
m Setutien Attempt 3

template <typename A, typename F, typename B>
B apply3(A a, F a_to_b) {
return a_to_b(a);

}
int i3 = apply3<char, 7?7, int>('a', [l(char c¢) { return c - 65; });
m Observations

m type parameter B is explicit
m but not directly connected to return type of F

m Problem: At call-site, B can't be inferred. We can explicitly instantiate B -
but now we'd have to do that for F as well, which we can'’t.
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Function Signature Notation: Example 3

m Task: Write down a function with signature
foi: AXx(AxA— B)— (A— B)

m Solution:

template <typename A, typename F>
auto bind(A al, F aa_to_b) {

return [=] (A a2) { return aa_to_b(al, a2); };
¥

std::string planet = "Mars";
auto f = bind([] (auto s1, auto s2) { return sl + s2; }, planet);

m Question: how to use £?
m Answer:

std::cout << f(" is the fourth planet from the sun.");
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Function Signature Notation: Example 3

m Task: Write down a function with signature
foi:Ax(AxA— B)— (A— B)
m Solution:

template <typename A, typename F>
auto bind(A al, F aa_to_b) {

return [=] (A a2) { return aa_to_b(al, a2); };
¥

std: :string planet = "Mars";
auto f = bind([] (auto s1, auto s2) { return sl + s2; }, planet);

m Question: What would happen if the capture were [&] instead of [=]?
m Answer: The returned lambda would capture argument a1 by reference,
but a1 is removed from memory when the call to bind() terminates.

Calling £ would thus result in undefined behaviour.
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A Prominent Higher Order Function

m Consider the function m : vec<A> x (A — B) — vec<B>
m Given the signature above, what could function m do?

m Visual hint;
ay ag --- A ---
[ ] I
X f
+1 1
bl b2bZ

m Task: Implement the function in C++
m Solution:
template <typename A, typename B>

Qn

I
f
1

std: :vector<B> map(std::vector<A> as, std::function<B(A)> f) {

std: :vector<B> result;
for (const auto& a : as)

result.push_back(f(a));
return result;

}
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/. Tree Recap




/1 Recap 2-3 Trees
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Searching

7 38
/\ /\

5 1012 16 1921 (23) 31 4046
IN7iNT\N7 0N\ I\ 7\

search(23) — found
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2-3 Tree: Insertion

Insert the keys 1,...,7 into an (initially empty) 2-3-tree. Draw the tree after
every step (split/propagate, join, ...).
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2-3 Tree: Insertion

/\

insert (1):
new node

2
/ )
34

TAVARY

insert(4):
join

12 123 2
,/’ I \\\ //’ | \\\ 1/ \3
/\ 7\
insert (2): insert(3): insert(3):
join 4-node split/propagate
2\\ 24 24
/ N
1 345 /1\ 173 56
D © ©
I\ /1 \\ 7\/\/\ JAVANEVARN
insert(5): insert(5): insert(6):
4-node split/propagate join
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2-3 Tree: Insertion

24 246

/v O\ 1N
1 3 567 1 3 5 7
/IN/\N 7.\ /I\N/\N /N /N

insert (7): insert (7):
4-node split/propagate

4
7 \
2 6
/\ /\
5 7

1T 3
NI

insert(7):
split/propagate
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2-4 Tree: Deletion

4
7\
2 6
/\ /\

5

1 3
NN

Delete key 4 from the resulting tree.

7

\

4



2-4 Tree: Deletion

5 256 .
2/ \6 // \\ / \
/\ /\ 1 3 4 7 e
A R ANAWANARRNAWINP/A
1. swap Eéotcreate d-node at 3 combine with sibling
25

/N

17 3 67

/N I\ 7\

4. delete key
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7.2 Recap Red-Black Trees
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Red-Black Trees

Draw the following 2-3 tree as a red-black tree.

6
6 PN
/ \ 4 10
/7 \ /7 \
24 10 2 5 7 14
/7 1+ \ /7 IR ’
7 11 14 1 3 /\ /\ 'I'I\

1 3 5
ININ N Ny o NN I

4t



Red-Black Trees: True or False?

1. right spine (path going right from root) has length [log,(n + 1)].
Correct, since there are no right-leaning red edges and we have perfect
black balance.

2. the number of red edges is at most the number of black edges.
Wrong, a tree with 2 nodes and one edge must have a red edge but not
black edge.

3. All nodes in the left subtree of a node are smaller than the node.
Correct, since a red-black tree is a search tree.
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Red-Black Trees: Insertion

Insert the numbers 1,...,7 into an (initially empty) red-black tree and draw
the tree after every step.
Compare your steps with your result for the 2-3 tree before.
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Red-Black Trees: Insertion

/ \

insert(2): rotate_left
(since right child red)

O o TN
/ \

insert (1) insert(2): add

P /\ /\
SO AN ININ

insert(3): push_up /\

insert(3): add (two red children) insert (4): add
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Red-Black Trees: Insertion

2
1/ \4 /2\
A B N

/ I\ I\

insert(4): rotate_left _ (5 add
(since right child red) inser :a
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Red-Black Trees: Insertion

1/ \4
/\ 3/ \5
AWA

insert(5): push_up
(two children red)

2/ \5
1/\3 / \
I\ I\

insert(5): rotate_left
(since right child red)
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Red-Black Trees: Insertion

4
4
N 2/ \6
2 5 /7 N\ /\
/7 N\ /\ 1 3 5
» € ° JANA /'\
ANA /\ insert(6): rotate_left

insert(6): add (since right child red)
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Red-Black Trees: Insertion

4

4 /\

/\ 2 6

2 6 AN JARN
RN ARN

1 3 5 7
1 3 5 7
ININ TN ARANEANA
insert(7): push_up

insert(7): add (since two children red)
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Red-Black Trees: Insertion

/ 4 \
2 6
ARN JARN
1 3 5 7
I\ 1\ I\ 1\
insert(7): push_up
(since both children red)
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8. Outro




General Questions?
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See you next time

Have a nice week!
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PVK Demand Analysis

m Chemie
m D&A
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