Exercise Session 07 — Functors, Lambdas

Data Structures and Algorithms
These slides are based on those of the course, but were adapted and

extended by the teaching assistant Adel Gavranovic

Today’s Schedule

Intro
Follow-up
Learning Objectives
Quadtrees
Code-Example
Higher Order Functions
Function Signature Notation
Tree Recap
Recap 2-3 Trees
Recap Red-Black Trees
Outro

n.ethz.ch/~agavranovic

https://n.ethz.ch/~agavranovic/download/Datastructures-and-Algorithms-FS2024/
https://n.ethz.ch/~agavranovic
mailto:adel.gavranovic@inf.ethz.ch

Comic of the Week

INTERNAL MONOLOGUES

FROM VARIOUS FIELDS

WERE ALL ACTING S0
NORMAL EVEN THOUGH
WERE FULL OF BLOOD
AND BONES AND POOR

[=]

TS 50 UEIRD THAT I § T WJONDER IF TODAY WILL ¥ T WONDER HOW THAT

OVER THE FACT) CAN FEEL THE EART | BE THE DAY EVERYONE) STORE ENDED UP WITH
THAT TREES ARE “JAND MY PHONE BEING (GETS HACKED AND |T THE LAW & ORDER
MADE OF AIR. PULLED TOGETER. |7 ALL FiNALLY COLLAPSES. | FONT FOR THEIR SIGN.

BN

BOTANY PHYSICS (OMPUTER SECURITY GRAPHIC DESIGN MEDICINE

°0

https://xkcd.com/2057/

1. Intro

Intro

m Welcome back!

2. Follow-up

Follow-up from last exercise session

m Red-Black tree from last session (S06)

Questions regarding code expert from your side?

3. Learning Objectives

Learning Objectives

Quadtrees Functors
[0 Understand what quadtrees are [0 Know what Functors are
where they are used [Understand how Functors work
[J Understand the minimization [1 Know where and how to use
problem behind quadtrees Functors
Red-Black Trees Lambdas
O Be able to perform basic [J Know what Lambdas are
operations on the most [J Understand how Lambdas work
common trees, in particular 00 Know where and how to use

Red-Black trees Lambdas

4. Quadtrees

Quadtrees

Quadtrees are trees where each node has at most four children.

Main application: Image processing.

Quadtrees for Image Compression

Insight: (1) Divide image recursively into four regions, (2) map the regions to
nodes in a quadtree und (3) assign each leaf the average color of its region.

Quadtrees for Image Compression

When and where to stop the recursion?

Too early? Is this better? Question: Should we stop when each node is
mapped to a pixel? Answer: We would get the original image but gain no
storage efficiency.

Quadtrees for Image Compression

We want

m as close approximation as possible, und
m as few nodes as possible.

This can be expressed as an optimization problem

Hy(T,y) =~ |LT)] + > My — el

v L(T
Number of leaves reL(T)

Cumulative approximation error of all leaves

where T is a quadtree, y is the image data, and v > 0 is a regularization

parameter. For a given v we seek the optimal solution argmin, H. (T, y).

Quadtrees for Image Compression

Hy(Tyy) ==~ |L(T)] + > Ny — w2

v (T
Number of leaves re)

Cumulative approximation error of all leaves

Question: What is the effect of a low value of 4?

Answer: Improves the approximation at the expense of increasing the size
of the quadtree.

Algorithm: Minimize(y,r,7)

Input: Image data y € R, rectangle r C S, regularization v > 0.

Output: ming 1|L(T)| + 1y — pur(r)|

if |7| = 0 then return 0

m =+ P ger (Ys — MT)Q

if 7| > 1 then
Split 7 into 7,71, Tul, Tur
mq <— Minimize(y, 1y, v); me < Minimize(y, 7., y)
ms < Minimize(y, 7y, y); ma < Minimize(y, 7y, y)
m' < mq +mo +ms+my

else

L m/ < oo
if m" <m then m + m/
return m

Code-Example

Quadtrees on code expert
m Region-Point Quadtree

https://expert.ethz.ch/solve/BDAvNNvMpm9EMF7Qb

6. Higher Order Functions

Motivation

m Overarching goal: make code generic, thus reusable
m Templates so far: make code parametric in the data it operates on, e.g.

m Pair<T> for all types T
m print<C> for all iterable containers C

m Now: make code parametric in the algorithms it uses, e.g.

m filter(container, predicate)

B apply(signal, transformation/filter)

B leader_election(participants, protocol)

B navigation_system(map, shortest_path_algorithm)
B Button("Save").onClick(handle_click_event)

Callables and Higher-Order Functions

m pred must be callable

// generic filter function (applicable, invocable), i.e.,
template <typename C, typename P> something function-like
C filter(const C& src_data, P pred) { mInCit:

C data;

m free or member function

for (const auto& e : src_data) ® lambda function

if (pred(e)) data.push_back(e); m functor (object with
operator())
return data; ®m std::function object
} m function pointers [not
discussed]

Functions taking or returning functions are called higher-order functions.

20

C+-+Functors

// generic filter function
template <typename C, typename P>
C filter(const C& src_data, P pred) {
C data;
for (const auto& e : src_data)
if (pred(e)) data.push_back(e);
return data;

}

// stateful predicate as functor
template <typename T>
struct AtLeast {

T min;

AtLeast(T m): min(m) {};

bool operator() (T i) comst {
return min <= i;
i
15

m A functor

m is it's an object that implements
operator ()

m combines state (since an object)
with callability (with the
operator())

m Objects of type AtLeast<T> are
callable with one T argument.

std::vector<int> data = {-1,0,1,2,-2,4,5,-3};
selectionl = filter(data, AtLeast(-1));

// = {-1,0,1,2,4,5}

selection2 = filter(data, AtLeast(4));

// = {4,5%}

21

Lambda Expressions Translate to Functors

std: :vector<int> data = {-1,0,1,2,-2,4,5,-3};

filter(data, [](int e) { return -2 <= e; });
filter(data, [](int e) { return e != 0; });

auto selectionl
auto selection2

struct lambdal {
bool operator() (int e) const {

return -2 <= e: m C+-+compiler generates
¥ functors from lambda

i .
expressions
struct lambda2 { .
bool operator() (int e) const { m Lambdas are not essential,

. return e != 0; but “merely” convenient
B

22

Lambda Expression Syntax

Most general shape:

ley,...,e,] (Thxq,....Tyx,) -> R { stmt }
- ~N ~ ~N S S~
captures parameters return body
type

Captures declare context variables the lambda’s body can access. Syntax examples:

[1 no context access

[x] x is copied (and const)

[&x] x is accessible by reference

[x, &yl xis copied, y is referenced

[&] all necessary variables are automatically referenced

[=] all necessary variables are automatically copied

[&, x] all necessary variables are referenced, except x, which is copied
[=, &x] all necessary variables are copied, except x, which is referenced

23

Functors

1. Write down the functor that
corresponds to the lambda

2. Use the functor in the filter(...)
expression

Solution

class lambdal {
unsigned& count;
int min;
public:
lambdal (unsigned& c, int m):
count(c), min(m) {}
bool operator() (int e) const {
++count;
return min <= e;
}
175

unsigned count = 0;

int min = 3;

std::vector<int> data = {4,-2,0};

data = filter(data, [&, min] (int e) {
++count; return min <= e;

B;

unsigned count = 0;
int min = 3;
std: :vector<int> data = {4,-2,0};

data = filter(data, lambdal(count, min));

24

Functors

m Observe that the lambda now uses the auto type placeholder for its
argument

data = filter(data, [](auto e) { return 0 <= e; });

m Question: How is this reflected by the generated functor?

m Solution:

class lambda2 {
public:
lambda2() {}

template <typename T>
bool operator() (T e) const {
return 0 <= e;
}
ks

25

6.1 Function Signature Notation

not exam relevant

26

Function Signature Notation

m |n the context of functional programming, function signatures are often
expressed in a mathematics-inspired notation

m Convention today: upper-case letters denote type parameters, lower-case
names denote concrete types

m Examples:

m f1: A—int function from any type to integer

B fy: Ax Ax A— bool function from three A’s to boolean

m f3:Ax (A— B)— B "higher-order function" (with two arguments)

B fy:vec<A> X (A — B) — vec higher-order function involving vectors

B f5:(AxA—B)xA— ((A— B)— bool) takingand returning a
function

27

Function Signature Notation: Example 1

m Task: Write down a function with signature f, : A x A — bool
m Solution:

template <typename A>
bool eq(A al, A a2) {
return al == a2;

}

28

Function Signature Notation: Example 2

m Task: Write down a function with signature f, : A x (A — B) — B
m Solution 1:

template <typename A, typename F>
auto applyl(A a, F a_to_b) {
return a_to_b(a);

}
int i1 = applyi('a', [l(char c¢) { return c - 65; });
m Observations

m type parameter B is only implicitly given, as F's return type
m template type parameters inferred at call-site

29

Function Signature Notation: Example 2

m Task: Write down a function with signature f, : Ax (A — B) — B
m Solution 2:

template <typename A, typename B>
B apply2(A a, std::function<B(A)> a_to_b) {
return a_to_b(a);

}
int i2 = apply2('a', std::function([](char c) { return c - 65; }));
m Observations

m type parameter B is explicit
m but we need to wrap the lambda in a std: : function
m template type parameters inferred at call-site

30

Function Signature Notation: Example 2

m Task: Write down a function with signature f,: A x (A — B) — B
m Setutien Attempt 3

template <typename A, typename F, typename B>
B apply3(A a, F a_to_b) {
return a_to_b(a);

}
int i3 = apply3<char, 7?7, int>('a', [l(char c¢) { return c - 65; });
m Observations

m type parameter B is explicit
m but not directly connected to return type of F

m Problem: At call-site, B can't be inferred. We can explicitly instantiate B -
but now we'd have to do that for F as well, which we can'’t.

31

Function Signature Notation: Example 3

m Task: Write down a function with signature
foi: AXx(AxA— B)— (A— B)

m Solution:

template <typename A, typename F>
auto bind(A al, F aa_to_b) {

return [=] (A a2) { return aa_to_b(al, a2); };
¥

std::string planet = "Mars";
auto f = bind([] (auto s1, auto s2) { return sl + s2; }, planet);

m Question: how to use £?
m Answer:

std::cout << f(" is the fourth planet from the sun.");

32

Function Signature Notation: Example 3

m Task: Write down a function with signature
foi:Ax(AxA— B)— (A— B)
m Solution:

template <typename A, typename F>
auto bind(A al, F aa_to_b) {

return [=] (A a2) { return aa_to_b(al, a2); };
¥

std: :string planet = "Mars";
auto f = bind([] (auto s1, auto s2) { return sl + s2; }, planet);

m Question: What would happen if the capture were [&] instead of [=]?
m Answer: The returned lambda would capture argument a1 by reference,
but a1 is removed from memory when the call to bind() terminates.

Calling £ would thus result in undefined behaviour.

33

A Prominent Higher Order Function

m Consider the function m : vec<A> x (A — B) — vec
m Given the signature above, what could function m do?

m Visual hint;
ay ag --- A ---
[] I
X f
+1 1
bl b2bZ

m Task: Implement the function in C++
m Solution:
template <typename A, typename B>

Qn

I
f
1

std: :vector map(std::vector<A> as, std::function<B(A)> f) {

std: :vector result;
for (const auto& a : as)

result.push_back(f(a));
return result;

}

34

/. Tree Recap

/1 Recap 2-3 Trees

36

Searching

7 38
/\ /\

5 1012 16 1921 (23) 31 4046
IN7iNT\N7 0N\ I\ 7\

search(23) — found

37

2-3 Tree: Insertion

Insert the keys 1,...,7 into an (initially empty) 2-3-tree. Draw the tree after
every step (split/propagate, join, ...).

38

2-3 Tree: Insertion

/\

insert (1):
new node

2
/)
34

TAVARY

insert(4):
join

12 123 2
,/’ I \\\ //’ | \\\ 1/ \3
/\ 7\
insert (2): insert(3): insert(3):
join 4-node split/propagate
2\\ 24 24
/ N
1 345 /1\ 173 56
D © ©
I\ /1 \\ 7\/\/\ JAVANEVARN
insert(5): insert(5): insert(6):
4-node split/propagate join

39

2-3 Tree: Insertion

24 246

/v O\ 1N
1 3 567 1 3 5 7
/IN/\N 7.\ /I\N/\N /N /N

insert (7): insert (7):
4-node split/propagate

4
7 \
2 6
/\ /\
5 7

1T 3
NI

insert(7):
split/propagate

40

2-4 Tree: Deletion

4
7\
2 6
/\ /\

5

1 3
NN

Delete key 4 from the resulting tree.

7

\

4

2-4 Tree: Deletion

5 256 .
2/ \6 // \\ / \
/\ /\ 1 3 4 7 e
A R ANAWANARRNAWINP/A
1. swap Eéotcreate d-node at 3 combine with sibling
25

/N

17 3 67

/N I\ 7\

4. delete key

42

7.2 Recap Red-Black Trees

43

Red-Black Trees

Draw the following 2-3 tree as a red-black tree.

6
6 PN
/ \ 4 10
/7 \ /7 \
24 10 2 5 7 14
/7 1+ \ /7 IR ’
7 11 14 1 3 /\ /\ 'I'I\

1 3 5
ININ N Ny o NN I

4t

Red-Black Trees: True or False?

1. right spine (path going right from root) has length [log,(n + 1)].
Correct, since there are no right-leaning red edges and we have perfect
black balance.

2. the number of red edges is at most the number of black edges.
Wrong, a tree with 2 nodes and one edge must have a red edge but not
black edge.

3. All nodes in the left subtree of a node are smaller than the node.
Correct, since a red-black tree is a search tree.

45

Red-Black Trees: Insertion

Insert the numbers 1,...,7 into an (initially empty) red-black tree and draw
the tree after every step.
Compare your steps with your result for the 2-3 tree before.

46

Red-Black Trees: Insertion

/ \

insert(2): rotate_left
(since right child red)

O o TN
/ \

insert (1) insert(2): add

P /\ /\
SO AN ININ

insert(3): push_up /\

insert(3): add (two red children) insert (4): add

47

Red-Black Trees: Insertion

2
1/ \4 /2\
A B N

/ I\ I\

insert(4): rotate_left _ (5 add
(since right child red) inser :a

48

Red-Black Trees: Insertion

1/ \4
/\ 3/ \5
AWA

insert(5): push_up
(two children red)

2/ \5
1/\3 / \
I\ I\

insert(5): rotate_left
(since right child red)

49

Red-Black Trees: Insertion

4
4
N 2/ \6
2 5 /7 N\ /\
/7 N\ /\ 1 3 5
» € ° JANA /'\
ANA /\ insert(6): rotate_left

insert(6): add (since right child red)

50

Red-Black Trees: Insertion

4

4 /\

/\ 2 6

2 6 AN JARN
RN ARN

1 3 5 7
1 3 5 7
ININ TN ARANEANA
insert(7): push_up

insert(7): add (since two children red)

51

Red-Black Trees: Insertion

/ 4 \
2 6
ARN JARN
1 3 5 7
I\ 1\ I\ 1\
insert(7): push_up
(since both children red)

52

8. Outro

General Questions?

54

See you next time

Have a nice week!

55

PVK Demand Analysis

m Chemie
m D&A

56

	Intro
	Follow-up
	Learning Objectives
	Quadtrees
	Code-Example
	Higher Order Functions
	Function Signature Notation

	Tree Recap
	Recap 2-3 Trees
	Recap Red-Black Trees

	Outro

