
Exercise Session 09 – Graph Algorithms
Data Structures and Algorithms
These slides are based on those of the lecture, but were adapted and
extended by the teaching assistant Adel Gavranović

Today’s Schedule

Intro
Feedback for code expert
Learning Objectives
Repetition Theory

Graphs: DFS and BFS
Topological Sorting
Dijkstra

Code-Expert Exercise
Red-Black Trees (again)
Old Exam Question
Outro

n.ethz.ch/~agavranovic

Exercise Session Material

Adel’s Webpage

Mail to Adel

1

Comic of the Week

xkcd 2

1. Intro

3

Intro

Welcome back!

4

Intro

Welcome back!

4

2. Feedback for code expert

5

General things regarding code expert

The subtask pertaining to Red-Black trees in the exercise "Trees" went
pretty bad, so we’re going over it again today (if time allows)

Some gave 2-3 Trees instead of Red-Black trees (which is impressive, but
not what was asked for)
Some trees were simply wrong
What went wrong? How can we improve?

The current Master Solution for this exercise is useless (imho) and I’m
working on a very detailed one that is going to be available "soon"

6

General things regarding code expert

The subtask pertaining to Red-Black trees in the exercise "Trees" went
pretty bad, so we’re going over it again today (if time allows)

Some gave 2-3 Trees instead of Red-Black trees (which is impressive, but
not what was asked for)
Some trees were simply wrong
What went wrong? How can we improve?

The current Master Solution for this exercise is useless (imho) and I’m
working on a very detailed one that is going to be available "soon"

6

General things regarding code expert

The subtask pertaining to Red-Black trees in the exercise "Trees" went
pretty bad, so we’re going over it again today (if time allows)

Some gave 2-3 Trees instead of Red-Black trees (which is impressive, but
not what was asked for)

Some trees were simply wrong
What went wrong? How can we improve?

The current Master Solution for this exercise is useless (imho) and I’m
working on a very detailed one that is going to be available "soon"

6

General things regarding code expert

The subtask pertaining to Red-Black trees in the exercise "Trees" went
pretty bad, so we’re going over it again today (if time allows)

Some gave 2-3 Trees instead of Red-Black trees (which is impressive, but
not what was asked for)
Some trees were simply wrong

What went wrong? How can we improve?

The current Master Solution for this exercise is useless (imho) and I’m
working on a very detailed one that is going to be available "soon"

6

General things regarding code expert

The subtask pertaining to Red-Black trees in the exercise "Trees" went
pretty bad, so we’re going over it again today (if time allows)

Some gave 2-3 Trees instead of Red-Black trees (which is impressive, but
not what was asked for)
Some trees were simply wrong
What went wrong? How can we improve?

The current Master Solution for this exercise is useless (imho) and I’m
working on a very detailed one that is going to be available "soon"

6

General things regarding code expert

The subtask pertaining to Red-Black trees in the exercise "Trees" went
pretty bad, so we’re going over it again today (if time allows)

Some gave 2-3 Trees instead of Red-Black trees (which is impressive, but
not what was asked for)
Some trees were simply wrong
What went wrong? How can we improve?

The current Master Solution for this exercise is useless (imho) and I’m
working on a very detailed one that is going to be available "soon"

6

Task "Binary Search Tree"

If you didn’t get 100% for this exercise: try again
This is a classic coding exercise

7

Task "Binary Search Tree"

If you didn’t get 100% for this exercise:

try again
This is a classic coding exercise

7

Task "Binary Search Tree"

If you didn’t get 100% for this exercise: try again

This is a classic coding exercise

7

Task "Binary Search Tree"

If you didn’t get 100% for this exercise: try again
This is a classic coding exercise

7

Questions regarding code expert from your side?

8

3. Learning Objectives

9

Learning Objectives

⇤ Understand and be able to manually execute all of the below

⇤ Breadth-First Search (BFS)
⇤ Depth-First Search (DFS)
⇤ Topological Sorting
⇤ Dijkstra’s Shortest Path Algorithm
⇤ Red-Black Trees

10

4. Repetition Theory

11

4.1 Graphs: DFS and BFS

12

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) œ E ?

�(1) �(deg+ v)

Find neighbours/successors of v œ V

�(n) �(deg+ v)

find v œ V without neighbour/successor

�(n2) �(n)

find all edges e œ E

�(n2) �(n + m)

Insert edge

�(1) �(1)

Delete edge

�(1) �(deg+ v)

13

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) œ E ? �(1)

�(deg+ v)

Find neighbours/successors of v œ V

�(n) �(deg+ v)

find v œ V without neighbour/successor

�(n2) �(n)

find all edges e œ E

�(n2) �(n + m)

Insert edge

�(1) �(1)

Delete edge

�(1) �(deg+ v)

13

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) œ E ? �(1) �(deg+ v)
Find neighbours/successors of v œ V

�(n) �(deg+ v)

find v œ V without neighbour/successor

�(n2) �(n)

find all edges e œ E

�(n2) �(n + m)

Insert edge

�(1) �(1)

Delete edge

�(1) �(deg+ v)

13

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) œ E ? �(1) �(deg+ v)
Find neighbours/successors of v œ V �(n)

�(deg+ v)

find v œ V without neighbour/successor

�(n2) �(n)

find all edges e œ E

�(n2) �(n + m)

Insert edge

�(1) �(1)

Delete edge

�(1) �(deg+ v)

13

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) œ E ? �(1) �(deg+ v)
Find neighbours/successors of v œ V �(n) �(deg+ v)
find v œ V without neighbour/successor

�(n2) �(n)

find all edges e œ E

�(n2) �(n + m)

Insert edge

�(1) �(1)

Delete edge

�(1) �(deg+ v)

13

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) œ E ? �(1) �(deg+ v)
Find neighbours/successors of v œ V �(n) �(deg+ v)
find v œ V without neighbour/successor �(n2)

�(n)

find all edges e œ E

�(n2) �(n + m)

Insert edge

�(1) �(1)

Delete edge

�(1) �(deg+ v)

13

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) œ E ? �(1) �(deg+ v)
Find neighbours/successors of v œ V �(n) �(deg+ v)
find v œ V without neighbour/successor �(n2) �(n)
find all edges e œ E

�(n2) �(n + m)

Insert edge

�(1) �(1)

Delete edge

�(1) �(deg+ v)

13

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) œ E ? �(1) �(deg+ v)
Find neighbours/successors of v œ V �(n) �(deg+ v)
find v œ V without neighbour/successor �(n2) �(n)
find all edges e œ E �(n2)

�(n + m)

Insert edge

�(1) �(1)

Delete edge

�(1) �(deg+ v)

13

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) œ E ? �(1) �(deg+ v)
Find neighbours/successors of v œ V �(n) �(deg+ v)
find v œ V without neighbour/successor �(n2) �(n)
find all edges e œ E �(n2) �(n + m)
Insert edge

�(1) �(1)

Delete edge

�(1) �(deg+ v)

13

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) œ E ? �(1) �(deg+ v)
Find neighbours/successors of v œ V �(n) �(deg+ v)
find v œ V without neighbour/successor �(n2) �(n)
find all edges e œ E �(n2) �(n + m)
Insert edge �(1)

�(1)

Delete edge

�(1) �(deg+ v)

13

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) œ E ? �(1) �(deg+ v)
Find neighbours/successors of v œ V �(n) �(deg+ v)
find v œ V without neighbour/successor �(n2) �(n)
find all edges e œ E �(n2) �(n + m)
Insert edge �(1) �(1)
Delete edge

�(1) �(deg+ v)

13

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) œ E ? �(1) �(deg+ v)
Find neighbours/successors of v œ V �(n) �(deg+ v)
find v œ V without neighbour/successor �(n2) �(n)
find all edges e œ E �(n2) �(n + m)
Insert edge �(1) �(1)
Delete edge �(1)

�(deg+ v)

13

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) œ E ? �(1) �(deg+ v)
Find neighbours/successors of v œ V �(n) �(deg+ v)
find v œ V without neighbour/successor �(n2) �(n)
find all edges e œ E �(n2) �(n + m)
Insert edge �(1) �(1)
Delete edge �(1) �(deg+ v)

13

Quiz #1

Question
Which graph representation, adjacency matrix or adjacency list, is more
suitable for representing a graph with a high number of edges compared to
vertices?

Answer
For a graph with a high number of edges compared to vertices, an adjacency
matrix is more suitable; the space complexity of an adjacency matrix is
�(n2), which is independent of the number of edges.

14

Quiz #1

Question
Which graph representation, adjacency matrix or adjacency list, is more
suitable for representing a graph with a high number of edges compared to
vertices?

Answer
For a graph with a high number of edges compared to vertices, an adjacency
matrix is more suitable; the space complexity of an adjacency matrix is
�(n2), which is independent of the number of edges.

14

Quiz #2

Question
When would it be more appropriate to use an adjacency matrix
representation rather than an adjacency list representation? Provide
annother example scenario.

Answer
For example, in a scenario where you need to frequently check the presence
of an edge or update edges between vertices, an adjacency matrix would be
more suitable due to its �(1) edge lookup, insertion, and deletion time
complexity.

15

Quiz #2

Question
When would it be more appropriate to use an adjacency matrix
representation rather than an adjacency list representation? Provide
annother example scenario.

Answer
For example, in a scenario where you need to frequently check the presence
of an edge or update edges between vertices, an adjacency matrix would be
more suitable due to its �(1) edge lookup, insertion, and deletion time
complexity.

15

Quiz #3

A

B

C

D

E

F
We want to count the number of triangles (cycles with 3 nodes and edges)
in a graph G.

In what time can we do this with an adjacency matrix? How about an
adjacency list?

16

Quiz #3

A

B

C

D

E

F
We want to count the number of triangles (cycles with 3 nodes and edges)
in a graph G.

In what time can we do this with an adjacency matrix? How about an
adjacency list?

16

Quiz #3

A

B

C

D

E

F
We want to count the number of triangles (cycles with 3 nodes and edges)
in a graph G.
In what time can we do this with an adjacency matrix? How about an
adjacency list?

16

Quiz #3 Solution
Adjacency matrix:

�(n2 + m · n)
Naively: �(n3): check for each of the

1
n
3

2
combinations of 3 nodes whether

the corresponding 3 edges are there.
E�cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list: �(n · m) with �(n) additional memory or �(n2

· m)
Naively: �(n2

· m): for every edge e = {u, v} and every potential third node
w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E�cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e�ectively comparing �(m) bitmaps of length n.

17

Quiz #3 Solution
Adjacency matrix: �(n2 + m · n)

Naively: �(n3): check for each of the
1

n
3

2
combinations of 3 nodes whether

the corresponding 3 edges are there.
E�cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list: �(n · m) with �(n) additional memory or �(n2

· m)
Naively: �(n2

· m): for every edge e = {u, v} and every potential third node
w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E�cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e�ectively comparing �(m) bitmaps of length n.

17

Quiz #3 Solution
Adjacency matrix: �(n2 + m · n)
Naively: �(n3): check for each of the

1
n
3

2
combinations of 3 nodes whether

the corresponding 3 edges are there.

E�cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list: �(n · m) with �(n) additional memory or �(n2

· m)
Naively: �(n2

· m): for every edge e = {u, v} and every potential third node
w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E�cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e�ectively comparing �(m) bitmaps of length n.

17

Quiz #3 Solution
Adjacency matrix: �(n2 + m · n)
Naively: �(n3): check for each of the

1
n
3

2
combinations of 3 nodes whether

the corresponding 3 edges are there.
E�cient: for every edge and every additional node, check whether the two
additional edges are there.

Adjacency list: �(n · m) with �(n) additional memory or �(n2
· m)

Naively: �(n2
· m): for every edge e = {u, v} and every potential third node

w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E�cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e�ectively comparing �(m) bitmaps of length n.

17

Quiz #3 Solution
Adjacency matrix: �(n2 + m · n)
Naively: �(n3): check for each of the

1
n
3

2
combinations of 3 nodes whether

the corresponding 3 edges are there.
E�cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list:

�(n · m) with �(n) additional memory or �(n2
· m)

Naively: �(n2
· m): for every edge e = {u, v} and every potential third node

w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E�cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e�ectively comparing �(m) bitmaps of length n.

17

Quiz #3 Solution
Adjacency matrix: �(n2 + m · n)
Naively: �(n3): check for each of the

1
n
3

2
combinations of 3 nodes whether

the corresponding 3 edges are there.
E�cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list: �(n · m) with �(n) additional memory or �(n2

· m)

Naively: �(n2
· m): for every edge e = {u, v} and every potential third node

w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E�cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e�ectively comparing �(m) bitmaps of length n.

17

Quiz #3 Solution
Adjacency matrix: �(n2 + m · n)
Naively: �(n3): check for each of the

1
n
3

2
combinations of 3 nodes whether

the corresponding 3 edges are there.
E�cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list: �(n · m) with �(n) additional memory or �(n2

· m)
Naively: �(n2

· m): for every edge e = {u, v} and every potential third node
w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.

E�cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e�ectively comparing �(m) bitmaps of length n.

17

Quiz #3 Solution
Adjacency matrix: �(n2 + m · n)
Naively: �(n3): check for each of the

1
n
3

2
combinations of 3 nodes whether

the corresponding 3 edges are there.
E�cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list: �(n · m) with �(n) additional memory or �(n2

· m)
Naively: �(n2

· m): for every edge e = {u, v} and every potential third node
w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E�cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e�ectively comparing �(m) bitmaps of length n.

17

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c f

a

b d e

c f

18

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a

b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c f

a

b d e

c f

18

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c

f

a

b

d e

c f

18

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d

e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c

f

a

b d

e

c f

18

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c f

a

b d e

c f

18

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c f

a

b d e

c

f

18

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c f

a

b d e

c f

18

Depth-First-Search DFS

DFS starting from a:

a b c

d e f

g h i

a b c

d e f

DFS-Tree: Distances and Parents

a

b d

c e

f

Distance 0

Distance 1

Distance 2

Distance 3

a

b

c

d

e

f

a

b

c

d

e

f

19

Depth-First-Search DFS

DFS starting from a:

a b c

d e f

g h i

a

b c

d e f

DFS-Tree: Distances and Parents

a

b d

c e

f

Distance 0

Distance 1

Distance 2

Distance 3

a

b

c

d

e

f

a

b

c

d

e

f

19

Depth-First-Search DFS

DFS starting from a:

a b c

d e f

g h i

a b

c

d e f

DFS-Tree: Distances and Parents

a

b d

c e

f

Distance 0

Distance 1

Distance 2

Distance 3

a

b

c

d

e

f

a

b

c

d

e

f

19

Depth-First-Search DFS

DFS starting from a:

a b c

d e f

g h i

a b c

d e f

DFS-Tree: Distances and Parents

a

b d

c e

f

Distance 0

Distance 1

Distance 2

Distance 3

a

b

c

d

e

f

a

b

c

d

e

f

19

Depth-First-Search DFS

DFS starting from a:

a b c

d e f

g h i

a b c

d

e f

DFS-Tree: Distances and Parents

a

b d

c e

f

Distance 0

Distance 1

Distance 2

Distance 3

a

b

c

d

e

f

a

b

c

d

e

f

19

Depth-First-Search DFS

DFS starting from a:

a b c

d e f

g h i

a b c

d e

f

DFS-Tree: Distances and Parents

a

b d

c e

f

Distance 0

Distance 1

Distance 2

Distance 3

a

b

c

d

e

f

a

b

c

d

e

f

19

Depth-First-Search DFS

DFS starting from a:

a b c

d e f

g h i

a b c

d e f

DFS-Tree: Distances and Parents

a

b d

c e

f

Distance 0

Distance 1

Distance 2

Distance 3

a

b

c

d

e

f

a

b

c

d

e

f

19

Detect Cycles

Cycle Detection
How can you detect cycles in a graph? Explain the process for undirected
and directed graphs.

20

Detect Cycles

DFS Cycle Detection
Start DFS traversal from an arbitrary node
undirected: If a visited node is encountered again (excluding the
immediate parent), a cycle exists.
directed: If an edge to a grey node is found, a directed cycle exists.

21

Exam Question Example

Answer: 14

22

Exam Question Example

Answer: 14
22

Quiz (from an old exam): BFS/DFS
The following graph is visited with a breadth-first search and a depth-first
search algorithm starting at node A. If there are several possibilities for a
visiting order of the neighbours, the alphabetical order is chosen. Provide
both visiting orders.

A

B

C

D

E

F

Breadth First Search: ?

Depth First Search: ?
23

Quiz (from an old exam): BFS/DFS
The following graph is visited with a breadth-first search and a depth-first
search algorithm starting at node A. If there are several possibilities for a
visiting order of the neighbours, the alphabetical order is chosen. Provide
both visiting orders.

A

B

C

D

E

F

Breadth First Search: A C D E B F

Depth First Search: ?
23

Quiz (from an old exam): BFS/DFS
The following graph is visited with a breadth-first search and a depth-first
search algorithm starting at node A. If there are several possibilities for a
visiting order of the neighbours, the alphabetical order is chosen. Provide
both visiting orders.

A

B

C

D

E

F

Breadth First Search: A C D E B F

Depth First Search: A C D B F E
23

4.2 Topological Sorting

24

Topological Sorting

A B

C

D

E

Graph with cycles

Two minimal cycles sharing an
edge
Remove edge =∆ cycle-free
Topological Sorting by “removing”
elements with in-degree 0

25

Topological Sorting

A B

C

D

E

Graph with cycles
Two minimal cycles sharing an
edge

Remove edge =∆ cycle-free
Topological Sorting by “removing”
elements with in-degree 0

25

Topological Sorting

A B

C

D

E

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =∆ cycle-free

Topological Sorting by “removing”
elements with in-degree 0

25

Topological Sorting

A B

C

D

E

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =∆ cycle-free
Topological Sorting by “removing”
elements with in-degree 0

25

Topological Sorting

A B

C

D

E

A Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =∆ cycle-free
Topological Sorting by “removing”
elements with in-degree 0

25

Topological Sorting

A B

C

D

E

A B Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =∆ cycle-free
Topological Sorting by “removing”
elements with in-degree 0

25

Topological Sorting

A B

C

D

E

A B

C

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =∆ cycle-free
Topological Sorting by “removing”
elements with in-degree 0

25

Topological Sorting

A B

C

D

E

A B

C E

Graph with cycles
Two minimal cycles sharing an
edge
Remove edge =∆ cycle-free
Topological Sorting by “removing”
elements with in-degree 0

25

Quiz 1: Topological Sorting

In how many ways can the following directed graphs be topologically sorted
each?

A B

C D
number sortings

?

A B

C D
number sortings

?

A B

C D
number sortings

?

26

Quiz 1: Topological Sorting

In how many ways can the following directed graphs be topologically sorted
each?

A B

C D
number sortings

2

A B

C D
number sortings

?

A B

C D
number sortings

?

26

Quiz 1: Topological Sorting

In how many ways can the following directed graphs be topologically sorted
each?

A B

C D
number sortings

2

A B

C D
number sortings

1

A B

C D
number sortings

?

26

Quiz 1: Topological Sorting

In how many ways can the following directed graphs be topologically sorted
each?

A B

C D
number sortings

2

A B

C D
number sortings

1

A B

C D
number sortings

0

26

Quiz 2: Topological Sorting

In the following graph, cross out the smallest possible set of edges such that
the remaining graph can be topologically sorted. Then provide a sorting.

A

B

C

D

E

F

Sorting: ?

27

Quiz 2: Topological Sorting

In the following graph, cross out the smallest possible set of edges such that
the remaining graph can be topologically sorted. Then provide a sorting.

A

B

C

D

E

F

Sorting: ?

27

Quiz 2: Topological Sorting

In the following graph, cross out the smallest possible set of edges such that
the remaining graph can be topologically sorted. Then provide a sorting.

A

B

C

D

E

F

Sorting: B A C E D F

27

4.3 Dijkstra

28

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9s 2

4

5

a

c

d

e

f

tbb
2

1

4

9 e

4

4

a

1

d
3

11

0

4

2

5

2 11

33 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S
U
R

Known shortest paths from s:
s s : 0

s d : 6

s b : 2 s f : 7
s a : 3 s e : 10
s c : 5 s t : 11

Outgoing edges:

s æ

s æ

s æ

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9s 2

4

5

a

c

d

e

f

tbb
2

1

4

9 e

4

4

a

1

d
3

11

0

4

2

5

2 11

33 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S
U
R

Known shortest paths from s:
s s : 0

s d : 6

s b : 2 s f : 7
s a : 3 s e : 10
s c : 5 s t : 11

Outgoing edges:

s æ

s æ

s æ

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9s 2

4

5

a

c

d

e

f

tbb
2

1

4

9 e

4

4

a

1

d
3

11

0

4

2

5

2 11

33 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1

s
0

11
t

1 11

S = {}

U = {s}

R = {a, b, c, d, e, f, t}

Known shortest paths from s:
s s : 0

s d : 6

s b : 2 s f : 7
s a : 3 s e : 10
s c : 5 s t : 11

Outgoing edges:

s æ

s æ

s æ

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9

s

2

4

5

a

c

d

e

f

tbb
2

1

4

9 e

4

4

a

1

d
3

11

0

4

2

5

2 11

33 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S = {s}

U = {}

R = {a, b, c, d, e, f, t}

Known shortest paths from s:
s s : 0

s d : 6
s b : 2 s f : 7
s a : 3 s e : 10
s c : 5 s t : 11

Outgoing edges:

s æ

s æ

s æ

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9

s 2

4

5

a

c

d

e

f

tb

b
2

1

4

9 e

4

4

a

1

d
3

11

0

4

2

5

2 11

33 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S = {s}

U = {a, b, c}

R = {d, e, f, t}

Known shortest paths from s:
s s : 0

s d : 6
s b : 2 s f : 7
s a : 3 s e : 10
s c : 5 s t : 11

Outgoing edges:
s æ a : 4
s æ b : 2
s æ c : 5

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9

s

2

4

5

a

c

d

e

f

t

b

b
2

1

4

9 e

4

4

a

1

d
3

11

0

4

2

5

2

11

33 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S = {s, b}
U = {a, c}

R = {d, e, f, t}

Known shortest paths from s:
s s : 0

s d : 6

s b : 2

s f : 7
s a : 3 s e : 10
s c : 5 s t : 11

Outgoing edges:
s æ a : 4
s æ b : 2
s æ c : 5

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

4

1

4

4

2

5

3

9

2

1

11

9

s

2

4

5

a

c

d

e

f

t

b

b
2

1

4

9 e

4

4

a

1

d
3

11

0

4

2

5

2

11

33 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S = {s, b}
U = {a, c, e}

R = {d, f, t}

Known shortest paths from s:
s s : 0

s d : 6

s b : 2

s f : 7
s a : 3 s e : 10
s c : 5 s t : 11

Outgoing edges:
s æ a : 4
s æ c : 5
s æ b æ a : 3
s æ b æ e : 11
s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

4

1

4

4

2

5

3

9

2

1

11

9

s

2

4

5

a

c

d

e

f

t

b

b
2

1

4

9 e

4

4

a

1

d
3

11

0

4

2

5

2 11

3

3 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S = {s, b}
U = {a, c, e}

R = {d, f, t}

Known shortest paths from s:
s s : 0

s d : 6

s b : 2

s f : 7
s a : 3 s e : 10
s c : 5 s t : 11

Outgoing edges:
s æ c : 5
s æ b æ a : 3
s æ b æ e : 11

s æ b æ e : 11
s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

4

1

4

4

2

5

3

9

2

1

11

9

s

2

4

5

a

c

d

e

f

t

b

b
2

1

4

9 e

4

4

a

1

d
3

11

0

4

2

5

2 11

3

3

6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S = {s, b, a}

U = {c, e}

R = {d, f, t}

Known shortest paths from s:
s s : 0

s d : 6

s b : 2

s f : 7

s a : 3

s e : 10
s c : 5 s t : 11

Outgoing edges:
s æ c : 5
s æ b æ a : 3
s æ b æ e : 11

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

4

1

4

4

2

5

3

9

2

1

11

9

s

2

4

5

a

c

d

e

f

t

b

b
2

1

4

9 e

4

4

a

1

d
3

11

0

4

2

5

2 11

3

3 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S = {s, b, a}

U = {c, e, d}

R = {f, t}

Known shortest paths from s:
s s : 0

s d : 6

s b : 2

s f : 7

s a : 3

s e : 10
s c : 5 s t : 11

Outgoing edges:
s æ c : 5
s æ b æ a æ d : 6
s æ b æ e : 11

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

4

1

4

4

2

5

3

9

2

1

11

9

s

2

4

5

a

c

d

e

f

t

b

b
2

1

4

9 e

4

4

a

1

d
3

11

0

4

2

5

2 11

3

3 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S = {s, b, a, c}

U = {e, d, f}

R = {f, t}

Known shortest paths from s:
s s : 0

s d : 6

s b : 2

s f : 7

s a : 3

s e : 10

s c : 5

s t : 11

Outgoing edges:
s æ c : 5
s æ b æ a æ d : 6
s æ b æ e : 11

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

4

1

4

4

2

5

3

9

2

1

11

9

s

2

4

5

a

c

d

e

f

t

b

b
2

1

4

9 e

4

4

a

1

d
3

11

0

4

2

5

2 11

3

3 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S = {s, b, a, c}

U = {e, d, f}

R = {t}

Known shortest paths from s:
s s : 0

s d : 6

s b : 2

s f : 7

s a : 3

s e : 10

s c : 5

s t : 11

Outgoing edges:
s æ b æ a æ d : 6
s æ b æ e : 11
s æ c æ f : 7

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

4

1

4

4

2

5

3

9

2

1

11

9

s

2

4

5

a

c

d

e

f

t

b

b
2

1

4

9 e

4

4

a

1

d

3

11

0

4

2

5

2 11

3

3 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S = {s, b, a, c, d}

U = {e, f}

R = {t}

Known shortest paths from s:
s s : 0 s d : 6
s b : 2

s f : 7

s a : 3

s e : 10

s c : 5

s t : 11

Outgoing edges:
s æ b æ a æ d : 6
s æ b æ e : 11
s æ c æ f : 7

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9

s

2

4

5

a

c

d

e

f

t

b

b
2

1

4

9 e

4

4

a

1

d

3

11

0

4

2

5

2 11

3

3 6

c
5

5

2
f

7

d
3 6

4

10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S = {s, b, a, c, d}

U = {e, f}

R = {t}

Known shortest paths from s:
s s : 0 s d : 6
s b : 2

s f : 7

s a : 3

s e : 10

s c : 5

s t : 11

Outgoing edges:
s æ b æ a æ d æ e : 10
s æ b æ e : 11
s æ c æ f : 7

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9s

2

4

5

a

c

d

e

f

t

b

b
2

1

4

9

e

4

4

a

1

d

3

11

0

4

2

5

2

11

3

3 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S = {s, b, a, c, d}

U = {e, f}

R = {t}

Known shortest paths from s:
s s : 0 s d : 6
s b : 2

s f : 7

s a : 3

s e : 10

s c : 5

s t : 11

Outgoing edges:
s æ b æ a æ d æ e : 10
s æ c æ f : 7

s æ

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9s

2

4

5

a

c

d

e

f

t

b

b
2

1

4

9

e

4

4

a

1

d

3

11

0

4

2

5

2

11

3

3 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S = {s, b, a, c, d, f}

U = {e}

R = {t}

Known shortest paths from s:
s s : 0 s d : 6
s b : 2 s f : 7
s a : 3

s e : 10

s c : 5

s t : 11

Outgoing edges:
s æ b æ a æ d æ e : 10
s æ c æ f : 7

s æ

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9s

2

4

5

a

c

d

e

f

tb

b
2

1

4

9

e

4

4

a

1

d

3

11

0

4

2

5

2

11

3

3 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18

e

4
10

7

1s
0 11

t
1 11

S = {s, b, a, c, d, f}

U = {e, t}
R = {}

Known shortest paths from s:
s s : 0 s d : 6
s b : 2 s f : 7
s a : 3

s e : 10

s c : 5

s t : 11

Outgoing edges:
s æ b æ a æ d æ e : 10
s æ c æ f æ t : 18

s æ

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9s

2

4

5

a

c

d

e

f

tb

b
2

1

4

9 e

4

4

a

1

d

3

11

0

4

2

5

2

11

3

3 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1s
0 11

t
1 11

S = {s, b, a, c, d, f, e}

U = {t}
R = {}

Known shortest paths from s:
s s : 0 s d : 6
s b : 2 s f : 7
s a : 3 s e : 10
s c : 5

s t : 11

Outgoing edges:
s æ b æ a æ d æ e : 10
s æ c æ f æ t : 18

s æ

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9s

2

4

5

a

c

d

e

f

tb

b
2

1

4

9 e

4

4

a

1

d

3

11

0

4

2

5

2

11

3

3 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18
e

4
10

7

1

s
0 11

t
1 11

S = {s, b, a, c, d, f, e}

U = {t}
R = {}

Known shortest paths from s:
s s : 0 s d : 6
s b : 2 s f : 7
s a : 3 s e : 10
s c : 5

s t : 11

Outgoing edges:
s æ b æ a æ d æ e æ t : 11
s æ c æ f æ t : 18

s æ

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9s

2

4

5

a

c

d

e

f

tb

b
2

1

4

9 e

4

4

a

1

d

3

11

0

4

2

5

2

11

3

3 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18

e

4
10

7

1

s
0

11

t
1 11

S = {s, b, a, c, d, f, e}

U = {t}
R = {}

Known shortest paths from s:
s s : 0 s d : 6
s b : 2 s f : 7
s a : 3 s e : 10
s c : 5

s t : 11

Outgoing edges:
s æ b æ a æ d æ e æ t : 11

s æ

s æ

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9s

2

4

5

a

c

d

e

f

tb

b
2

1

4

9 e

4

4

a

1

d

3

11

0

4

2

5

2

11

3

3 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18

e

4
10

7

1s
0 11

t
1 11

S = {s, b, a, c, d, f, e, t}
U = {}

R = {}

Known shortest paths from s:
s s : 0 s d : 6
s b : 2 s f : 7
s a : 3 s e : 10
s c : 5 s t : 11

Outgoing edges:
s æ b æ a æ d æ e æ t : 11

s æ

s æ

s æ

s æ b æ c : 6

29

Example

s

a

b

c

d

e

f

t

41

4

4

2

5

3

9

2

1

11

9s

2

4

5

a

c

d

e

f

tb

b
2

1

4

9 e

4

4

a

1

d

3

11

0

4

2

5

2

11

3

3 6

c
5

5

2
f

7

d
3 6

4
10

f
2

t

11

18

e

4
10

7

1s
0 11

t
1 11

S = {s, b, a, c, d, f, e, t}
U = {}

R = {}

Known shortest paths from s:
s s : 0 s d : 6
s b : 2 s f : 7
s a : 3 s e : 10
s c : 5 s t : 11

Outgoing edges:

s æ b æ a æ d æ e æ t : 11

s æ

s æ

s æ

s æ b æ c : 6

29

Dijkstra (positive edge weights)

Set V of nodes is partitioned into
the set S of nodes for which a shortest
path from s is already known,
the set U = t

vœS N+(v) \ S of nodes where
a shortest path is not yet known but that
are accessible directly from S,
the set R = V \ (S fi U) of nodes that have
not yet been considered.

s

2

2

5

3

5

2

1

2

30

Algorithm Dijkstra(G, s)
Input: Positively weighted Graph G = (V, E, c), starting point s œ V ,
Output: Minimal weights d of the shortest paths and corresponding predecessor

node for each node.

foreach u œ V do

ds[u] Ω Œ; fis[u] Ω null

ds[s] Ω 0; U Ω {s}

while U ”= ÿ do

u Ω ExtractMin(U)
foreach v œ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v] Ω ds[u] + c(u, v)
fis[v] Ω u
U Ω U fi {v}

31

Implementation: Data Structure for U?

Relax for Dijkstra:
if ds[u] + c(u, v) < ds[v] then

ds[v] Ω ds[u] + c(u, v)
fis[v] Ω u
if v ”œ U then

Add(U, v) // Insertion of a new (v, d(v)) in the heap of U
else

DecreaseKey(U, v) // Update of a (v, d(v)) in the heap of U

32

DecreaseKey ?

Heap ((a, 1), (b, 4), (c, 5), (d, 8)) =
(a,1)

(b,4)

(d,8)

(c,5)

after DecreaseKey(d, 3):

(a,1)

(d,3)

(b,4)

(c,5)

2 problems:
Position of d unknown at first. Search: �(n)
Positions of the nodes can change during DecreaseKey

33

DecreaseKey ?

Heap ((a, 1), (b, 4), (c, 5), (d, 8)) =
(a,1)

(b,4)

(d,8)

(c,5)

after DecreaseKey(d, 3):
(a,1)

(d,3)

(b,4)

(c,5)

2 problems:

Position of d unknown at first. Search: �(n)
Positions of the nodes can change during DecreaseKey

33

DecreaseKey ?

Heap ((a, 1), (b, 4), (c, 5), (d, 8)) =
(a,1)

(b,4)

(d,8)

(c,5)

after DecreaseKey(d, 3):
(a,1)

(d,3)

(b,4)

(c,5)

2 problems:
Position of d unknown at first. Search: �(n)
Positions of the nodes can change during DecreaseKey

33

Lazy Deletion !
Heap ((a, 1), (b, 4), (c, 5), (d, 8)) =

(a,1)

(b,4)

(d,8)

(c,5)

Insert(d, 3):

(a,1)

(d,3)

(d,8) (b,4)

(c,5)

ExtractMin() æ (a, 1)
(d,3)

(b,4)

(d,8)

(c,5)

ExtractMin() æ (d, 3)
(b,4)

(d,8) (c,5)

Later ExtractMin() æ (d, 8) must be ignored

34

Lazy Deletion !
Heap ((a, 1), (b, 4), (c, 5), (d, 8)) =

(a,1)

(b,4)

(d,8)

(c,5)

Insert(d, 3):
(a,1)

(d,3)

(d,8) (b,4)

(c,5)

ExtractMin()

æ (a, 1)
(d,3)

(b,4)

(d,8)

(c,5)

ExtractMin() æ (d, 3)
(b,4)

(d,8) (c,5)

Later ExtractMin() æ (d, 8) must be ignored

34

Lazy Deletion !
Heap ((a, 1), (b, 4), (c, 5), (d, 8)) =

(a,1)

(b,4)

(d,8)

(c,5)

Insert(d, 3):
(a,1)

(d,3)

(d,8) (b,4)

(c,5)

ExtractMin() æ (a, 1)
(d,3)

(b,4)

(d,8)

(c,5)

ExtractMin()

æ (d, 3)
(b,4)

(d,8) (c,5)

Later ExtractMin() æ (d, 8) must be ignored

34

Lazy Deletion !
Heap ((a, 1), (b, 4), (c, 5), (d, 8)) =

(a,1)

(b,4)

(d,8)

(c,5)

Insert(d, 3):
(a,1)

(d,3)

(d,8) (b,4)

(c,5)

ExtractMin() æ (a, 1)
(d,3)

(b,4)

(d,8)

(c,5)

ExtractMin() æ (d, 3)
(b,4)

(d,8) (c,5)

Later ExtractMin() æ (d, 8) must be ignored
34

Runtime Dijkstra

n := |V |, m := |E|

n◊ ExtractMin: O(n log n)
m◊ Insert or DecreaseKey: O(m log n)
1◊ Init: O(n)
Overall: O((n + m) log n). For connected graphs: O(m log n).

35

Quiz: An Interesting Graph

s t
32 16 8 4 2

5
-5

10
-10

19
-19

36
-36

69
-69

Does Dijkstra work?

36

Answer

Dijkstra works also for graphs with negative edge weights (with the
modification that nodes can be added to and removed from U repeatedly),
if no negative weight cycles are present. But Dijkstra may then exhibit
exponential running time!

37

Answer

Dijkstra works also for graphs with negative edge weights (with the
modification that nodes can be added to and removed from U repeatedly),
if no negative weight cycles are present. But Dijkstra may then exhibit
exponential running time!

37

5. Code-Expert Exercise

38

Code-Example 1

’BFS on a Tree’ on Code-Expert

39

6. Red-Black Trees (again)

40

Insert: 9, 5, 14, 7, 3, 16, 1, 4 into Red-Black Tree

41

Insert: 9, 5, 14, 7, 3, 16, 1, 4 into Red-Black Tree

42

Insert: 9, 5, 14, 7, 3, 16, 1, 4 into Red-Black Tree

43

7. Old Exam Question

44

Dijkstra Exam Question

45

Dijkstra Exam Question – Solution

But why? Because the Dijkstra algorithm can have an exponential runtime if
negative edges are included!

46

Dijkstra Exam Question – Solution

But why?

Because the Dijkstra algorithm can have an exponential runtime if
negative edges are included!

46

Dijkstra Exam Question – Solution

But why? Because the Dijkstra algorithm can have an exponential runtime if
negative edges are included!

46

8. Outro

47

General Questions?

48

See you next time

Have a nice week!

49

