
Exercise Session 10 – Graphs & Paths
Data Structures and Algorithms
These slides are based on those of the lecture, but were adapted and
extended by the teaching assistant Adel Gavranović

Today’s Schedule
Intro
Follow-up
Feedback for code expert
Learning Objectives
Minor Recap
Theory Recap

Shortest Paths
All Pairs Shortest Paths
Minimum Spanning Trees

Code-Expert Exercise
TSP
Old Exam Question
Outro

n.ethz.ch/~agavranovic

Exercise Session Material

Adel’s Webpage

Mail to Adel

1

https://n.ethz.ch/~agavranovic/download/Datastructures-and-Algorithms-FS2024/
https://n.ethz.ch/~agavranovic
mailto:adel.gavranovic@inf.ethz.ch

Comic of the Week

xkcd 2

https://xkcd.com/2694/

1. Intro

3

Intro

My throat is still a little sore
New date for the session next week

Thu next week is a holiday
Alternatives should be listed on the course page soon
My session:
▶ Wed 8th May
▶ 16 - 18
▶ CHN G 42

4

2. Follow-up

5

Follow-up from last exercise session

Quiz: Runtimes of Simple Operations (s. 13)

There are differences between undirected and directed graph’s runtimes1

especially for the “find all neighbours” operation

Quiz #3 (s. 17)

Was arguably a little too complicated for a tiny quiz question

Dijkstra Turning Exponential (s. 46)

Basically, every possible bit patters is a new possible combination that
the algorithm has to check, i.e. exponentially many paths, thus O(2n)

1think about it, but don’t worry too much about it
6

3. Feedback for code expert

7

code expert

Master Solution for “Trees”
Is on my homepage now
If you notice errors, let me know

Non-deterministic Grading for “Amazing Mazes I”
Don’t be alarmed if you get a different grading for the same code
(yes, just submit the better graded one)
Long story short: the mazes are generated pseudo-randomly and that
might cause some test to take longer than intended, yielding a virtual
timer error
Even the Master Solution suffered from this

8

Questions regarding code expert from your side?

9

4. Learning Objectives

10

Learning Objectives

Understand how and why. . .
□ . . . the A* algorithm
□ . . . the Bellman-Ford algorithm
□ . . . the Floyd-Warshall algorithm
□ . . . the Jarnik-Prim-Dijkstra algorithm
□ . . . Kruskal’s algorithm

works and when to use it

11

5. Minor Recap

12

Minor Recap

Quick recap on all of these
Heuristic
Transitive Closure
Bellman-Ford Algorithm
Floyd-Warshall Algorithm

13

6. Theory Recap

14

6.1 Shortest Paths

15

A*-Algorithm(G, s, t, ĥ)
Input: Positively weighted Graph G = (V, E, c), starting point s ∈ V , end point

t ∈ V , estimate ĥ(v) ≤ δ(v, t)
Output: Existence and value of a shortest path from s to t

foreach u ∈ V do

d[u]←∞; f̂ [u]←∞; π[u]← null

d[s]← 0; f̂ [s]← ĥ(s); R← {s}; M ← {}
while R ̸= ∅ do

u← ExtractMin
f̂
(R); M ←M ∪ {u}

if u = t then return success
foreach v ∈ N+(u) with d[v] > d[u] + c(u, v) do

d[v]← d[u] + c(u, v); f̂ [v]← d[v] + ĥ(v); π[v]← u
R← R ∪ {v}; M ←M − {v}

return failure
16

Properties

The A*-Algorithm is an extension of the Dijkstra algortihm by a distance
heuristic ĥ.
A* is Dijkstra if ĥ ≡ 0
underestimation: ∀v ∈ V : ĥ(v) ≤ δ(v, t)
If ĥ underestimates the real distance, the algorithm works correctly.
Monotonicity: ∀(u, u′) ∈ E : ĥ(u′) ≤ ĥ(u) + c(u′, u)
If ĥ is monotone in addition, then the algorithm works efficiently.

17

General Weighted Graphs

Relax(u, v) (u, v ∈ V , (u, v) ∈ E)
if ds(v) > ds(u) + c(u, v) then

ds(v)← ds(u) + c(u, v)
return true

return false
s

u

v

ds(u)

ds(v)

Problem: cycles with negative weights can shorten the path, a shortest path
is not guaranteed to exist.

18

Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]:
Shortest path from s to v via maximally i edges.

ds[i, v] = min{ds[i− 1, v], min
(u,v)∈E

(ds[i− 1, u] + c(u, v))

ds[0, s] = 0, ds[0, v] =∞ ∀v ̸= s.

19

Algorithm Bellman-Ford(G, s)
Input: Graph G = (V, E, c), starting point s ∈ V
Output: If return value true, minimal weights d for all shortest paths from s,

otherwise no shortest path.

foreach u ∈ V do
ds[u]←∞; πs[u]← null

ds[s]← 0;
for i← 1 to |V | do

f ← false
foreach (u, v) ∈ E do

f ← f ∨ Relax(u, v)
if f = false then return true

return false;

Runtime O(|E| · |V |).
20

6.2 All Pairs Shortest Paths

21

DP Algorithm Floyd-Warshall(G)

Input: Acyclic Graph G = (V, E, c)
Output: Minimal weights of all paths d
d0 ← c
for k ← 1 to |V | do

for i← 1 to |V | do
for j ← 1 to |V | do

dk(vi, vj) = min{dk−1(vi, vj), dk−1(vi, vk) + dk−1(vk, vj)}

Runtime: Θ(|V |3)
Remark: Algorithm can be executed with a single matrix d (in place).

22

Example

1

2 4 3

5

1
3

7

55

1

3

1

3
1

1 2 3 4 5
1 0 1 5 3 7
2 1 0 3 1 5
3 5 3 0 1 1
4 3 1 1 0 3
5 7 5 1 3 0

adjacency matrix M = c

23

Example

0 1 5 3 7
1 0 3 1 5
5 3 0 1 1
3 1 1 0 3
7 5 1 3 0

k = 1

d0

0 1 5 3 7
1 0 3 1 5
5 3 0 1 1
3 1 1 0 3
7 5 1 3 0

d1

0 1 5 3 7
1 0 3 1 5
5 3 0 1 1
3 1 1 0 3
7 5 1 3 0

k = 2

d1

0 1 4 2 6
1 0 3 1 5
4 3 0 1 1
2 1 1 0 3
6 5 1 3 0

d2

0 1 4 2 6
1 0 3 1 5
4 3 0 1 1
2 1 1 0 3
6 5 1 3 0

k = 3

d2

0 1 4 2 5
1 0 3 1 4
4 3 0 1 1
2 1 1 0 2
5 4 1 2 0

d3

0 1 4 2 5
1 0 3 1 4
4 3 0 1 1
2 1 1 0 2
5 4 1 2 0

k = 4

d3

0 1 3 2 4
1 0 2 1 3
3 2 0 1 1
2 1 1 0 2
4 3 1 2 0

d4

0 1 3 2 4
1 0 2 1 3
3 2 0 1 1
2 1 1 0 2
4 3 1 2 0

k = 5

d4

0 1 3 2 4
1 0 2 1 3
3 2 0 1 1
2 1 1 0 2
4 3 1 2 0

d5

24

Shortest Path for each Pair?

0 1 5 3 7
1 0 3 1 5
5 3 0 1 1
3 1 1 0 3
7 5 1 3 0

M
0 1 3 2 4
1 0 2 1 3
3 2 0 1 1
2 1 1 0 2
4 3 1 2 0

D := d5

0 1 3 2 4
1 0 2 1 3
3 2 0 1 1
2 1 1 0 2
4 3 1 2 0

0 1 3 2 4
1 0 2 1 3
3 2 0 1 1
2 1 1 0 2
4 3 1 2 0

D′′

Question: Can we use the computed matrix D to determine the shortest
path between each pair of nodes?
Direct connections i→ j where M [i, j] = D[i, j] (cf markings in D′ above)
Could try to run the algorithm backwards. Example 1→ 3 above in D′′. Find,
with decreasing k, the first fitting candidate.
Complicated and inefficient.

25

Idea

Memorize the best k in the algorithm for each node pair (i, j).
Start with matrix of existing direct connections (edges)

26

Example

0 1 5 3 7
1 0 3 1 5
5 3 0 1 1
3 1 1 0 3
7 5 1 3 0

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

0 1 4 2 6
1 0 3 1 5
4 3 0 1 1
2 1 1 0 3
6 5 1 3 0

1 2 2 2 2
1 2 3 4 5
2 2 3 4 5
2 2 3 4 5
2 2 3 4 5

0 1 4 2 5
1 0 3 1 4
4 3 0 1 1
2 1 1 0 2
5 4 1 2 0

1 2 2 2 3
1 2 3 4 3
2 2 3 4 5
2 2 3 4 3
3 3 3 3 5

0 1 3 2 4
1 0 2 1 3
3 2 0 1 1
2 1 1 0 2
4 3 1 2 0

1 2 4 2 4
1 2 4 4 4
4 4 3 4 5
2 2 3 4 3
4 4 3 3 5

0 1 3 2 4
1 0 2 1 3
3 2 0 1 1
2 1 1 0 2
4 3 1 2 0

1 2 4 2 4
1 2 4 4 4
4 4 3 4 5
2 2 3 4 3
4 4 3 3 5

B

K

k = 1 k = 2 k = 3 k = 4 k = 5

27

Example

1 2 3 4 5
1 1 2 4 2 4
2 1 2 4 4 4
3 4 4 3 4 5
4 2 2 3 4 3
5 4 4 3 3 5

K
How to read this matrix K? Example path 1→ 5:

Path 1→ 5 goes via node 4.
Path 1→ 4 goes via node 2.
Path 4→ 5 goes via node 3.
Paths 1→ 2 and 2→ 4 are direct.
Paths 4→ 3 and 3→ 5 are direct.

Overall

1 4→ 5 ⇒ 1 2→ 4 3→ 5 ⇒ 1→ 2→ 4→ 3→ 5

Reconstruction via Recursion. Alternative? Store descenden in the
algorithm

28

Example

0 1 5 3 7
1 0 3 1 5
5 3 0 1 1
3 1 1 0 3
7 5 1 3 0

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

0 1 4 2 6
1 0 3 1 5
4 3 0 1 1
2 1 1 0 3
6 5 1 3 0

1 2 2 2 2
1 2 3 4 5
2 2 3 4 5
2 2 3 4 5
2 2 3 4 5

0 1 4 2 5
1 0 3 1 4
4 3 0 1 1
2 1 1 0 2
5 4 1 2 0

1 2 2 2 2
1 2 3 4 3
2 2 3 4 5
2 2 3 4 3
3 3 3 3 5

0 1 3 2 4
1 0 2 1 3
3 2 0 1 1
2 1 1 0 2
4 3 1 2 0

1 2 2 2 2
1 2 4 4 4
4 4 3 4 5
2 2 3 4 3
3 3 3 3 5

0 1 3 2 4
1 0 2 1 3
3 2 0 1 1
2 1 1 0 2
4 3 1 2 0

1 2 2 2 2
1 2 4 4 4
4 4 3 4 5
2 2 3 4 3
3 3 3 3 5

B

K

k = 1 k = 2 k = 3 k = 4 k = 5

29

Comparison of the approaches

Algorithm Runtime
Dijkstra (Heap) cv ≥ 0 1:n O(|E| log |V |)
Dijkstra (Fibonacci-Heap) cv ≥ 0 1:n O(|E|+ |V | log |V |) ∗

Bellman-Ford 1:n O(|E| · |V |)
Floyd-Warshall n:n Θ(|V |3)
Johnson n:n O(|V | · |E| · log |V |)
Johnson (Fibonacci-Heap) n:n O(|V |2 log |V |+ |V | · |E|) ∗

* amortized
Johnson (not explained this year) is better than Floyd-Warshall only for sparse graphs
(|E| ≈ Θ(|V |)).

30

6.3 Minimum Spanning Trees

31

Minimum Spanning Trees

s

t

u

v

w

x

1

1

2

4
3

2

2
6

t

s u v w

x

1

1

23 2

(Solution is not unique.)

32

Jarnik-Prim-Dijkstra Algorithm

Finds a minimum spanning tree.
Starts from a single node and grows.
Uses a priority queue.
Evaluates edges, not paths.

33

Algorithm Jarnik-Prim-Dijkstra(G)

Input: A connected, undirected graph G = (V, E) with weights w
Output: A minimum spanning tree T

Initialize T = ∅
Choose arbitrary vertex v0 from V
while V ̸= ∅ do

Choose edge (u, v) with smallest weight such that u is in T and v is in V − T
Add v to T
Remove v from V

return T

34

Differences from Dijkstra’s Algorithm

Jarnik-Prim-Dijkstra evaluates edges. Dijkstra evaluates paths.
Jarnik-Prim-Dijkstra creates a minimum spanning tree. Dijkstra finds the
shortest path.
Jarnik-Prim-Dijkstra cannot handle negative weights. Dijkstra can under
certain conditions.

35

MakeSet, Union, and Find

Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets with names i and j.

In MST-Kruskal:
Make-Set(i): New tree with i as root.
Find(e): Find root of e

Union(i, j): Union of the trees i and j.

36

Algorithm MST-Kruskal(G)
Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |V | do

MakeSet(k)

for k = 1 to m do
(u, v)← ek

if Find(u) ̸= Find(v) then
Union(Find(u),Find(v))
A← A ∪ ek

return (V, A, c)

37

Representation as array

s

t

u

v

w

x

1

1

2

4
3

2

2
6

Index s t w v u x

t

s u v w

x

1

1

23 2

Index s t u v w x
Parent t t t t t v

38

Different kind of improvement

Link all nodes to the root when Find is called.
Find(i):
j ← i
while (p[i] ̸= i) do i← p[i]
while (j ̸= i) do

t← j
j ← p[j]
p[t]← i

return i

Cost: amortised nearly constant (inverse of the Ackermann-function).2

2We do not go into details here.
39

Running time of Kruskal’s Algorithm

Sorting of the edges: Θ(|E| log |E|) = Θ(|E| log |V |). 3

Initialisation of the Union-Find data structure Θ(|V |)
|E|× Union(Find(x),Find(y)): O(|E| log |E|) = O(|E| log |V |).

Overal Θ(|E| log |V |).

3because G is connected: |V | ≤ |E| ≤ |V |2
40

7. Code-Expert Exercise

41

Code-Example

’Kruskal MST’ on Code-Expert

42

8. TSP

43

Travelling Salesperson Problem

Problem
Given a map and list of cities, what is the shortest possible route that
visits each city once and returns at the original city?

Mathematical model
On an undirected, weighted graph G, which cycle containing all of G’s
vertices has the lowest weight sum?

44

Travelling Salesperson Problem

45

Travelling Salesperson Problem

The problem has no known polynomial-time solution.
Many heuristic algorithms exists. They do not always return the optimal
solution.

46

Travelling Salesperson Problem

The heuristic algorithm that you are asked to implement on CodeExpert
(The Travelling Student) on CodeExpert uses an MST:

1. Compute the minimum spanning tree M
2. Make a depth first search on M

The algorithm is 2-approximate, meaning that the solution it generates
has at most twice the cost of the optimal solution.
The algorithm assumes a complete graph G = (V, E, c)that satisfies the
triangle inequality: c(v, w) ≤ c(v, x) + c(x, w) ∀ v, w, x ∈ V

47

9. Old Exam Question

48

Minimum Spanning Trees

49

Minimum Spanning Trees – Solution

50

10. Outro

51

General Questions?

52

Don’t forget!

Next Week’s Session
Wed 8th May
16 - 18
CHN G 42

53

See you next time

Have a nice week!

54

	Intro
	Follow-up
	Feedback for codeexpertcolorcodeexpertcolorcode expert
	Learning Objectives
	Minor Recap
	Theory Recap
	Shortest Paths
	All Pairs Shortest Paths
	Minimum Spanning Trees

	Code-Expert Exercise
	TSP
	Old Exam Question
	Outro

