ETH zürich

Exercise Session 11 – DP and Flow Algos

Data Structures and Algorithms

These slides are based on those of the lecture, but were adapted and extended by the teaching assistant Adel Gavranović

Today's Schedule

Intro
Feedback for **code** expert
MaxFlow
Old Exam Questions (Max-Flow)
Dynamic Programming
Overlap of Convex Polygons
In-Class Code-Example
Outro

n.ethz.ch/~agavranovic

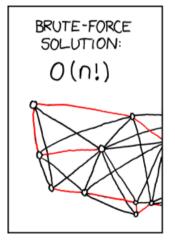
► Exercise Session Material

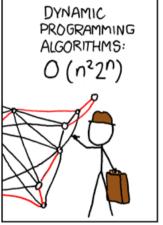
▶ Adel's Webpage

▶ Mail to Adel

1

Comic of the Week





2

1. Intro

Intro

- Often explaining stuff via email is suboptimal
- Consider going to the Study Center (especially if it's related to exercises!)
 - Thursdays
 - 08:15 10:00
 - ML H 41.1

2. Feedback for **code** expert

General things regarding code expert

- You can submit your partial solutions too!
- If you want feedback, please make sure to indicate what part of your code you want me to have a closer look at or what you think the problem is
- I'm not going to be very responsive in the Lernphase¹ so better ask now
- Scores for exercises with (pseudo)random stuff can vary. So occasionally, it makes sense to just re-test the same code

¹your boi has his own exams

Questions regarding **code** expert from your side?

3. MaxFlow

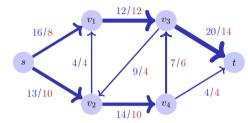
Flow

A **Flow** $f: V \times V \to \mathbb{R}$ fulfills the following conditions:

- Bounded Capacity: For all $u, v \in V$: $f(u, v) \le c(u, v)$.
- Skew Symmetry: For all $u, v \in V$: f(u, v) = -f(v, u).
- Conservation of flow:

For all
$$u \in V \setminus \{s, t\}$$
:

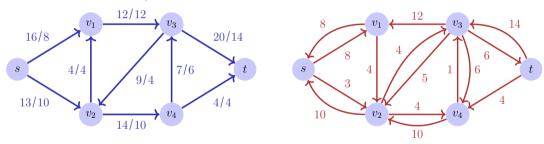
$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v).$$



Value of the flow: $|f| = \sum_{v \in V} f(s, v)$. Here |f| = 18.

Residual Network

Residual network G_f provided by the edges with positive residual capacity:



Residual networks provide the same kind of properties as flow networks with the exception of permitting antiparallel edges

Augmenting Paths

Expansion Path p: simple path from s to t in the residual network G_f . **Residual Capacity** $c_f(p)$: the least capacity along the expansion path p

$$c_f(p) = \min\{c_f(u, v) : (u, v) \text{ edge in } p\}$$

Algorithm Ford-Fulkerson(G, s, t)

```
Input: Flow network G = (V, E, c)
Output: Maximal flow f.
for (u,v) \in E do
f(u,v) \leftarrow 0
while Exists path p: s \leadsto t in residual network G_f do
   c_f(p) \leftarrow \min\{c_f(u,v) : (u,v) \in p\}
   foreach (u, v) \in p do
       if (u,v) \in E then
       f(u,v) \leftarrow f(u,v) + c_f(p)
```

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in G_f the expansion path of shortest possible length (e.g. with BFS)

Theorem 1

When the Edmonds-Karp algorithm is applied to some integer valued flow network G=(V,E) with source s and sink t then the number of flow increases applied by the algorithm is in $\mathcal{O}(|V|\cdot|E|)$

 \Rightarrow Overall asymptotic runtime: $\mathcal{O}(|V|\cdot|E|^2)$

Max-Flow Min-Cut Theorem

Theorem 2

Let f be a flow in a flow network G=(V,E,c) with source s and sink t. The following statements are equivalent:

- 1. f is a maximal flow in G
- 2. The residual network G_f does not provide any expansion paths
- 3. It holds that |f| = c(S,T) for a cut (S,T) of G.

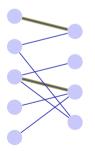
(**Hint:** This one is *really* important)

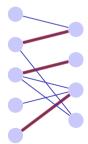
Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, E).

Matching $M: M \subseteq E$ such that $|\{m \in M: v \in m\}| \le 1$ for all $v \in V$.

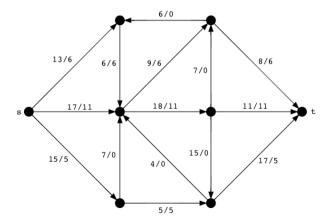
Maximal Matching M: Matching M, such that $|M| \ge |M'|$ for each matching M'.



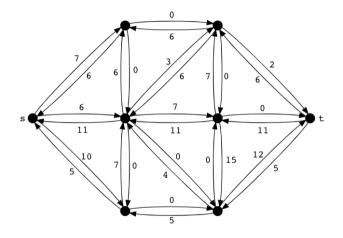


Manual Max Flow Exercise

This graph shows a flow chart that is not at maximum capacity. Run one iteration of the Ford-Fulkerson algorithm to find the max flow.



Manual Max Flow Solution



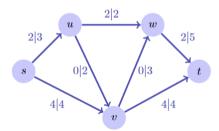
update not shown since it is not unique!

4. Old Exam Questions (Max-Flow)

Exam Question Example

Gegeben ist das folgende Flussnetzwerk G mit Quelle s und Senke t. Die einzelnen Kapazitäten c_i und Flüsse ϕ_i sind an den Kanten angegeben als $\phi_i|c_i$. Geben Sie den Wert des Flusses f an.

Provided in the following is a flow network G with source s and sink t. Capacities c_i and flows ϕ_i are provided at the edges as $\phi_i|c_i$. Provide the value of the flow f.

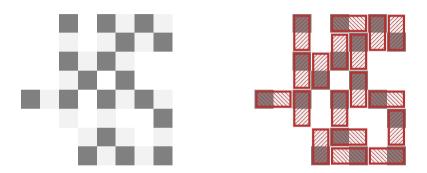


$$|f| =$$

Gegeben ist das folgende Flussnetzwerk G mit Quelle s und Senke t. Die einzelnen Kapazitäten c_i und Flüsse ϕ_i sind an den Kanten angegeben als $\phi_i|_{C_i}$ Geben Sie den Wert

Provided in the following is a flow network G with source s and sink t. Capacities c_i and flows ϕ_i are provided at the edges as $\phi_i|_{G}$. Provide the value

Max Flow Question



Let an $n \times n$ chessboard be given without some squares. Describe an efficient algorithm to find out if the board can be completely covered with dominoes. Then model the problem as a flow problem.

5. Dynamic Programming

Dynamic Programming: Idea

- 1. Divide a complex problem into a reasonable number of sub-problems; Partial solutions are combined to more complex ones
 - = Top-down recursion ("assume the subproblems")
- 2. Identical problems will be computed only once
 - = Memoization
 - The idea is to simply **store the results of subproblems** so that we do not have to re-compute them when needed later.
- 3. Eliminate recursion
 - = Bottom-up algorithms ("combine the subproblems")
- Optionally, not always possible: Save space by storing as little as possible in the DP table

Dynamic Programming: Idea

Question: Which of the following Fibonacci implementations would perform better?

```
int fib(int n) {
   if (n <= 1) {
      return n;
   }

   return fib(n - 1) +
      fib(n - 2);
}</pre>
```

```
int fib2(int n) {
    std::vector<int> f(n+1);
    f[0] = 0;
    f[1] = 1;

    for(int i=2;i<=n;++i){
        f[i] = f[i-1]+f[i-2];
    }

    return f[n];
}</pre>
```

```
int fib3(int n) {
 if (n <= 1) {
    return n:
 int a = 0:
 int b = 1:
 for(int i=2;i<=n;++i){
    int a old = a:
    a = b:
    b += a old:
  return b:
```

Dynamic Programming = Divide-And-Conquer?

- In both cases the original problem can be solved (more easily) by utilizing the solutions of sub-problems. The problem provides **optimal** substructure.
- Divide-And-Conquer algorithms (such as Mergesort): *sub-problems are independent*; their solutions are required only once in the algorithm.
- Dynamic Programming: sub-problems are dependent. The problem is said to have **overlapping sub-problems** that are required multiple-times in the algorithm.
- In order to avoid redundant computations, results are tabulated. For sub-problems there must not be any circular dependencies.

Memoization vs. Dynamic Programming

■ Memoization:

- Top-down approach
- Recursion with caching of results
- Lazily computes values on-demand
- Can be more efficient if only a few values are needed

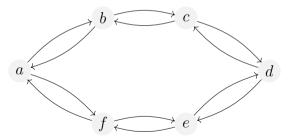
Dynamic Programming:

- Iterative bottom-up approach
- Builds solutions from smaller subproblems
- Computes all values in a predefined order
- Can be more efficient if all values are needed

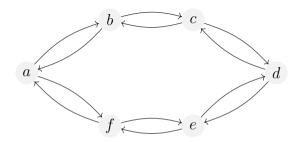
Problem Without Optimal Substructure

Question: Problem Without Optimal Substructure?

Example: Longest (simple) path



Problem Without Optimal Substructure: Longest Path



- \blacksquare Longest path from, e.g. a to e is a, b, c, d, e, i.e. via c
- But the longest path from a to c is not a, b, c (and analogously for c to e)
- ⇒ Combining optimal subsolutions does not yield an optimal overall solution
- ⇒ This problem does not have optimal substructure

Memoization vs. Dynamic Programming

Question

In which of the following cases might memoization be significantly more efficient than dynamic programming?

- 1. When all values are required for the final result
- 2. When only a few values are required for the final result
- 3. When the problem has overlapping subproblems
- 4. When the problem can be solved iteratively

Memoization vs. Dynamic Programming

Answer

Memoization might be significantly more efficient than dynamic programming when only a few values are required for the final result (option 2).

Dynamic Programming

A complete description of a dynamic program **always** consists of:

■ Definition of the subproblems / the DP table:

What are the dimensions of the table? What is the meaning of each entry?

■ Recursion: Computation of an entry:

How can an entry be computed from the values of other entries? Which entries do not depend on others?

■ Computation order (topological order):

In which order can entries be computed so that values needed for each entry have been determined in previous steps?

Solution and Running Time:

How can the final solution be extracted once the table has been filled? Running time of the DP algorithm.

Review

Choose which characteristics a problem needs to have for a dynamic programming approach to be appropriate:

- Optimal substructure
- Real-time problem-solving
- Independent sub-problems
- Memory-efficient solution
- Recursive structure

- Overlapping sub-problems
- Circular dependencies
- Tabulation or memoization potential
- Small state space

Answers

Choose which characteristics a problem needs to have for a dynamic programming approach to be appropriate:

- Optimal substructure
- Real-time problem-solving
- Independent sub-problems
- Memory-efficient solution
- **■** Recursive structure

- Overlapping sub-problems
- Circular dependencies
- Tabulation or memoization potential
- Small state space

Example: Coin Change Problem

Definition

Given a set of coin denominations and a target amount, find the minimum number of coins needed to make the target amount. Note that the same coin denomination can be used more than once.

Example

Given coins = [1, 2, 4] and target amount = 8, the solution is 2(4 + 4).

Remark

When the problem does not have a solution, the algorithm returns -1.

Coin Change Problem

Task

Design a recursive algorithm to solve the task.

Coin Change: Recursive Solution

```
int coinChange(const std::vector<int>& coins, int amount) {
    if (amount == 0) {
        return 0;
    int minCoins = INT MAX;
    for (int coin : coins) {
        if (amount - coin >= 0) {
            int temp = coinChange(coins, amount - coin);
            if (temp != -1) {
                minCoins = std::min(minCoins, temp + 1);
    return minCoins == INT_MAX ? -1 : minCoins;
```

Coin Change Problem

Task

Design a DP algorithm to solve the task.

Coin Change: Dynamic Programming

We can use dynamic programming to solve this problem by building a one-dimensional array where dp[i] represents the minimum number of coins required to make the amount *i*:

- Set each element in dp to a value larger than the maximum possible number of coins.
- \blacksquare Set dp[0] = 0.
- For each coin c, iterate through the array and update dp[i] if dp[i-c]+1 has a lower value.

Coin Change: DP Solution

```
int coinChange(const std::vector<int>& coins, int amount) {
    std::vector<int> dp(amount + 1, amount + 1);
    dp[0] = 0;
    for (int coin : coins) {
        for (int i = coin; i <= amount; ++i) {</pre>
            dp[i] = std::min(dp[i], dp[i - coin] + 1);
    return dp[amount] <= amount ? dp[amount] : -1;</pre>
```

Coin Change: DP Visualisation

After processing the third and last coin. Answer: dp[8] = 2.

Coin Change: Time Complexity

Task

Compare the time complexity of the DP algorithm with that of the naive recursive algorithm

Naive Algorithm

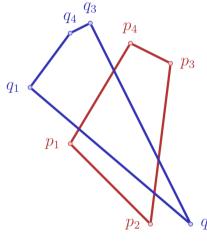
The naive algorithm has an exponential time complexity of $\mathcal{O}(c^n)$, where c is the number of coin denominations and n is the target amount.

Dynamic Programming Algorithm

The dynamic programming algorithm has a polynomial time complexity of $\mathcal{O}(c \cdot n)$, where c is the number of coin denominations and n is the target amount.

6. Overlap of Convex Polygons

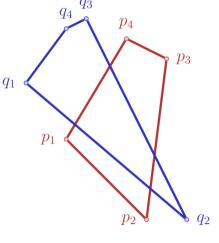
Overlap of Convex Polygons – Issues



Main issue with most solutions

You sorted the given polygon points $(\mathcal{O}(n \log n))$ instead of using the fact that they were given in partly sorted order!

Overlap of Convex Polygons – Solution Sketch



- The **Event Points** are the 2n points of the convex polygons, sorted by their x-coord
- They can be stored in a sorted array by merging the sequences p_1, \ldots, p_n and q_1, \ldots, q_n (given in counterclockwise sorting starting with the left-most point)
- Split each sequence into increasing and decreasing subsequences, then merge the increasing subsequences and the reversed decreasing subsequences
- Store the polygon info and incident line segments for each point
- This step can be completed in $\Theta(n)$ time!

7. In-Class Code-Example

Code-Examples: Memoization and DP

Memoization and DP: Maximum Sum of an Increasing Subsequence → **code** expert

8. Outro

General Questions?

See you next time

Have a nice week!