Exercise Session 12 — DP, Greedy Algos

Data Structures and Algorithms
These slides are based on those of the lecture, but were adapted and

extended by the teaching assistant Adel Gavranovic
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1. Intro




Intro

m Lots to do; We're mostly skipping the "Intro"



2. Follow-up




Follow-up from last exercise session
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Follow-up from last exercise session

Old Max Flow Exam Question

m The Max Flow question from last time (that we skipped) was from the
Exam' of 26.01.2018

m |t's solvable via a bipartite matching approach




3. Learning Objectives




Learning Objectives

[J Gather some intuition on how DP Algorithms look like and work
[J Understand greedy approaches and when it's reasonable to use
[J Understand Huffman Coding and be able to perform it manually



4, Example: Longest Common Subsequence




DP Example: Longest Common Subsequence

Definition
A subsequence of a sequence is generated by removing some or none of the
elements of the original sequence. For example, "AC" is a subsequence of

IIABCH.



DP Example: Longest Common Subsequence

Definition

A subsequence of a sequence is generated by removing some or none of the

elements of the original sequence. For example, "AC" is a subsequence of
IIABCH.

Problem

Given two sequences X and Y, find the length of the longest common
subsequence of X and V.



Concrete Problem Instance

Example
X: PROGRAM
Y: ARMOR

Answer?



Concrete Problem Instance

Example

X: PROGRAM
Y: ARMOR

Answer
length 3: ROR



Subproblems?

String X of length m and string Y of length n:
Which subproblems are there?



Subproblems?

String X of length m and string Y of length n:

Which subproblems are there?

m if last character matches: +1 and shorten both strings by one letter
m shorten X by one, leave Y the same

m shorten Y by one, leave X the same



Recursive Solution

int lcs(const std::string& X, const std::string& Y, int m, int n) {

if m==0 [l n==0) {

return O;
}
if (X[m - 1] == Y[n - 1]1) {

return 1 + lcsX, Y, m -1, n - 1);
} else {

return std::max(lcs(X, Y, m - 1, n),

les(X, Y, m, n - 1));



Dynamic Programming

Instead, we can use dynamic programming to solve this problem by building
a table to store the lengths of the longest common subsequences of the
prefixes of X and Y
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to the diagonal cell value incremented by one, or one if it doesn’t exist.



Dynamic Programming

Instead, we can use dynamic programming to solve this problem by building
a table to store the lengths of the longest common subsequences of the
prefixes of X and Y

m Update the table values from the top left to the bottom right.

m If the characters at the current position match, set the current cell value
to the diagonal cell value incremented by one, or one if it doesn’t exist.

m If they don’t match, set the current cell value to the maximum of the
left and top cell values, or zero if they don't exist.



D P I a b le m Update the table values from the top left to the bottom right.
m If the characters at the current position match, set the current cell value
. . — P B N
to the diagonal cell value incremented by one, or one if it doesn't exist.

m |f they don’t match, set the current cell value to the maximum of the
left and top cell values, or zero if they don't exist.
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Solution Reconstruction

find LCS (reconstruct solution)?

16



Solution Reconstruction

find LCS (reconstruct solution)?

To find the LCS, trace backwards from the bottom right and mark the
starting letter of each diagonal arrow.
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Solution Reconstruction @

find LCS (reconstruct solution)?

To find the LCS, trace backwards from the bottom right and mark the
starting letter of each diagonal arrow.
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Time Complexity

Question

How does the time complexity of the DP algorithm compare to the naive
recursive algorithm?



Time Complexity

Question

How does the time complexity of the DP algorithm compare to the naive
recursive algorithm?

Naive (Recursive) Algorithm
The naive algorithm has an
exponential time complexity of
O(2"*™), where n and m are the
lengths of the two sequences.



Time Complexity

Question
How does the time complexity of the DP algorithm compare to the naive
recursive algorithm?

Naive (Recursive) Algorithm Dynamic Programming Algorithm
The naive algorithm has an The dynamic programming algorithm
exponential time complexity of has a polynomial time complexity of
O(2"*™), where n and m are the O(n-m).

lengths of the two sequences.



5. Example: Palindromes




DP Example: Palindromes

A palindrome is a word that reads the same way in either forward or reverse
direction. Example: RACECAR.

’for n = 2 we only require a; = as
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A palindrome is a word that reads the same way in either forward or reverse
direction. Example: RACECAR.
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DP Example: Palindromes

A palindrome is a word that reads the same way in either forward or reverse
direction. Example: RACECAR.

Formally: (a4, ...,a,) is a palindrome <
m eithern=1, or
W a; = a, and (as,...,a, 1) is a palindrome 2

We use an array A[l..n] to store a string of length n. A subarray Al[i..j| is
called palindrome in A if itis a palindrome. Examples:

m [L, A, R, Al contains palindromes A (2x), R, L and ARA
m [A, N, N, A] contains palindromes A (2x), N (2x), NN and ANNA

’for n = 2 we only require a; = as



DP Example: Palindromes

Task 1.1: Describe an efficient dynamic programming algorithm that finds all

pairs (i,j) where A[i]... A[j] is a palindrome.
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DP Example: Palindromes

Task 1.1: Describe an efficient dynamic programming algorithm that finds all

pairs (i,j) where A[i]... A[j] is a palindrome.
Examples:

. [L’ A’ R’ A] —><1a1)7(272)7(373>’(474)7(274)
m[A, N, N, Al — (1,1),(2,2),(3,3),(4,4),(2,3), (1, 4)
Task 1.2: What is the running time of your solution?

20



DP Example: Palindromes

Task 1.1: Describe an efficient dynamic programming algorithm that finds all

pairs (i,j) where A[i]... A[j] is a palindrome.
Examples:
m[L, A, R, A] — (1,1),(2,2),(3,3),(4,4),(2,4)
m[A, N, N, A] — (1,1),(2,2),(3,3),(4,4),(2,3),(1,4)
Task 1.2: What is the running time of your solution?

m Try to find a DP algorithm!  (herd)
m How does the table look like? (kvtal) .
m How do we traverse the table? (3% Ak Lase cases ...

m How do we compute an entry? (3 ¢=<%) .
B what at YL basa cams (en3y) ond vt as J-L:\? (Larsh)
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Palindromes Task 1.1: Solution

Task 1.2: What is the running time of your solution? n? AE"")
Try to find a DP algorithm! (herd)
o How does thetable look like? (ivtal) S LACECAR
of How do we traverse the table? (s¥=>r%y ~% Case eases ... \:_——‘m
w How do we compute an entry? (3 ¢=3<2)
Pwhat at Il base games (essy) oot SERENE -l-k:‘? (harst)
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Palindromes Task 1.1;: Solution
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Palindromes Task 1.1;: Solution
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Palindromes Task 1.1;: Solution

RIA|C|G|C|A|R
R|1]0]0
®| - |]1]0

Gl - -] 1]0f]a
El - - -] o
cCl-1|-|-|-1]1]o0
Al - | -~ | || - 1]O0
R - [~ |- -]-1]-1n1
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Palindromes Task 1.1;: Solution

R | A C E C| A R
1 0 0

- 1 0 0

B - 1 0
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Palindromes Task 1.1;: Solution

R | A C E C| A R
1 0 0

- 1 0 0

B - 1 0 1
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Palindromes Task 1.1;: Solution

R | A C E C| A R
1 0 0

- 1 0 0

B - 1 0 1
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Palindromes Task 1.1;: Solution

R | A C E C| A R
1 0 0

- 1 0 0

B - 1 0 1
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Palindromes Task 1.1;: Solution

—_
o
1O || 0O

(P O mMm|O|>| =
|
|
|
|
—_
o
o

21



Palindromes Task 1.1;: Solution

R|A|C|E|C]|]A]|R
R|1]0]01]0

Al -|[1]0]0]0
Cl-|-|1]0].1

E|-|-|-]17]01]0
cCl-|-|-]-]1l0]o0
K|l - -|-|-1-111]0
R| - |- -|-|-1-1n

21



Palindromes Task 1.1;: Solution

R|A|C|]E|C|]A]|R
R|1[0]0]|oO

Al -|l1]0]01|0O0

C|-|-|1l01.1]0
E|-|-|-|17]701]0
cC|-|-|-|-]11]101]0
Al -|-|-|-|-|1]0
R - | - | -1 -1-1]-1]"1
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Palindromes Task 1.1;: Solution

Definition of the DP table: We use an n x n table T with entries that are 0
orl.Fori<i<j<nmletT[ij]=1 <= (A[i,...,Alj]) is a palindrome.

22



Palindromes Task 1.1;: Solution

Definition of the DP table: We use an n x n table T" with entries that are 0
orl.Fori<i<j<nmletT[ij]=1 <= (A[i,...,Alj]) is a palindrome.
Computation of an entry: We distinguish three cases.

1. 1 <i=j<n:Al]isa palindrome of length 1, thus we set

Tli,§] = Tli,i] = 1

22



Palindromes Task 1.1;: Solution

Definition of the DP table: We use an n x n table T" with entries that are 0
orl.Fori<i<j<nmletT[ij]=1 <= (A[i,...,Alj]) is a palindrome.
Computation of an entry: We distinguish three cases.

1. 1 <i=j<n:Al]isa palindrome of length 1, thus we set

T(i, jl =Tli,i] =1
2.1<i<mn,j=1i+1<n:We consider palindromes of length 2, and set
Tli,i+ 1] =1 < Ali] = Ali + 1]
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Palindromes Task 1.1;: Solution

Definition of the DP table: We use an n x n table T with entries that are 0
orl.Fori<i<j<nmletT[ij]=1 <= (A[i,...,Alj]) is a palindrome.
Computation of an entry: We distinguish three cases.
1. 1 <i=j<n:Al]isa palindrome of length 1, thus we set
2.1<i<mn,j=1+1<n:We consider palindromes of [ength 2, and set
Tli,i+1] =1 < Ali] = A[i + 1] o”_dra‘)
3.1<i<ni+1<j<n: let(A[],...,A[j]) bethe considered sequence.
By definition it is a palindrome if A[i] = A[j] and additionally,
(Ali +1],...,A[j — 1]) is a palindrome. Thus we set else
Tli,j]=1 < Ali|=A[jland T[i+1,j —1] =1

22



Palindromes Task 1.1;: Solution

Example: A = RACECER is not a palindrome, but contains non-trivial
palindromes CEC and ECE.

R | A | C E C E R

|lm|Ofm|oO|>| X
1
1
1
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Palindromes Task 1.1;: Solution

Example: A = RACECER is not a palindrome, but contains non-trivial
palindromes CEC and ECE.

R C E C E R
R 0 0 0
A B 1 0 0
C - - 1 0 1
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C - - B - 1 0 0
E - B B B - 1 0
R - - B B B - 1
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Palindromes Task 1.1;: Solution

Example: A = RACECER is not a palindrome, but contains non-trivial
palindromes CEC and ECE.
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Palindromes Task 1.1;: Solution

Example: A = RACECER is not a palindrome, but contains non-trivial
palindromes CEC and ECE.

R

o
OO O

OO m

2O = 1O|O0O

O | _|O|lO|lO | m
OO O|lOC|OC|O |0

|lm|Ofm|oO|>| X
1
1
1
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Palindromes: Solution

Task 1.2: What is the running time of the algorithm?
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Palindromes: Solution

Task 1.2: What is the running time of the algorithm?

m The table has n? entries. We must effecively fill ¢ ”*1 € O(n?) of these.
m Each table entry can be computed in time O(1).

m Hence, filling the table is done in O(n?) steps.

nackes Atgo
Ma ‘,‘:,‘ sCh)a\

[not exam relevantd
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Palindromes: Solution

Task 1.2: What is the running time of the algorithm?
m The table has n? entries. We must effecively fill ¢ ”*1) € O(n?) of these.
m Each table entry can be computed in time O(1).
m Hence, filling the table is done in O(n?) steps.

Task 2.1: Describe how a longest palindrome in A can be extracted from the
DP table constructed before.
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Task 1.2: What is the running time of the algorithm?

m The table has n? entries. We must effecively fill ¢ ”*1) € O(n?) of these.
m Each table entry can be computed in time O(1).
m Hence, filling the table is done in O(n?) steps.
Task 2.1: Describe how a longest palindrome in A can be extracted from the
DP table constructed before.

Traverse table in opposite order of filling, starting from the entry T'[1, n]. If
Ti,j] =1, then Ali] ... A[j] is a palindrome. The first such entry found is a
longest palindrome.

24



Palindromes: Solution

Task 1.2: What is the running time of the algorithm?
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Ti,j] =1, then Ali] ... A[j] is a palindrome. The first such entry found is a
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Palindromes: Solution

Task 1.2: What is the running time of the algorithm?

m The table has n? entries. We must effecively fill ¢ ”“) € O(n?) of these.
m Each table entry can be computed in time O(1).
m Hence, filling the table is done in O(n?) steps.
Task 2.1: Describe how a longest palindrome in A can be extracted from the
DP table constructed before.

Traverse table in opposite order of filling, starting from the entry T'[1, n]. If
Ti,j] =1, then Ali] ... A[j] is a palindrome. The first such entry found is a
longest palindrome.

Task 2.2: What is the running time of the reconstruction?
Same as before: O(n?).
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Recap: Greedy Choice

A problem with a recursive solution can be solved with a greedy algorithm
if it has the following properties:
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Recap: Greedy Choice

A problem with a recursive solution can be solved with a greedy algorithm
if it has the following properties:

m The problem has optimal substructure: the solution of a problem can be
constructed with a combination of solutions of sub-problems.
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Recap: Greedy Choice

A problem with a recursive solution can be solved with a greedy algorithm
if it has the following properties:

m The problem has optimal substructure: the solution of a problem can be
constructed with a combination of solutions of sub-problems.

m The problem has the greedy choice property: The solution to a problem
can be constructed, by using a local property that does not depend on
the solution of the sub-problems.
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Recap: Greedy Choice

A problem with a recursive solution can be solved with a greedy algorithm
if it has the following properties:

m The problem has optimal substructure: the solution of a problem can be
constructed with a combination of solutions of sub-problems.

m The problem has the greedy choice property: The solution to a problem
can be constructed, by using a local property that does not depend on
the solution of the sub-problems.

Examples: Fractional knapsack problem, Huffman coding
Counterexamples: Knapsack problem, optimal binary search tree.
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7. Example: Activity Selection




Activity Selection

Coordination of activities that use a common resource exclusively. Activities
S ={ay,ay,...,a,} with start- and finishing times 0 < s, < f; < oo, sorted
in ascending order by finishing times.

= (1, 4) ]

= (3,5) m—

az = (0,6) _

a1l = (12,16) m—————



Activity Selection

Coordination of activities that use a common resource exclusively. Activities
S ={ay,ay,...,a,} with start- and finishing times 0 < s, < f; < oo, sorted
in ascending order by finishing times.

ar = (1,4) m——

as = (3,5) n——
az = (0,6) HE—

a1l = (12,16) m—————

Activity Selection Problem: Find a maximal subset (maximum number of
elements) of compatible (non-intersecting) activities.



Dynamic Programming Approach?

Let Sij = {ak : fz < s A fk < Sj}.
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Dynamic Programming Approach?

Let Sij = {ak : fz < s A fk < Sj}.
Let A;; be a maximal subset of compatible activities from S;.
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Dynamic Programming Approach?
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Dynamic Programming Approach?

Let Sij = {ak : fz < s A fk < Sj}.
Let A;; be a maximal subset of compatible activities from S;.
Let a; € Az’j and Azk =S N Az’j: Akj = Skj N Az’jr thus Aij = Azk + {ak} + Akj-

A Ak Ag;
fi Sj

A, and Ag; must be maximal, otherwise A;; = A, + {ar} + Ax; would not
be maximal - obviously?
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Dynamic Programming Approach?

Why must A;;, and Ax; be maximal subsets of compatible activities for
A;; to be maximal as well?
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Dynamic Programming Approach?

Why must A;;, and Ax; be maximal subsets of compatible activities for
A;; to be maximal as well?

The reason is that if either A;;, or Ax; were not maximal, there would exist
additional compatible activities that could be added to these subsets.

30



Dynamic Programming Approach?

Let Cij = |A2]|
Then the following recursion holds

0 falls S;; = 0,
Cii =
/ maX,,es, {cik +cx; + 1} falls Sj; # 0.

= Dynamic programming.
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Dynamic Programming Approach?

Let Cij = |A2]|
Then the following recursion holds

Cij =

0 falls S;; = 0,
maX,,es, {cik +cx; + 1} falls Sj; # 0.
= Dynamic programming.

But there is a simpler alternative.
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Intuition: Choose the activity that provides the earliest end time (a;). That
leaves maximal space for other activities.
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Greedy

Given: The set of subproblem Sy, and an activity a,, from Sy with the
earliest end time. Then a,, is contained in a maximal subset of compatible
activities from S;,.

Let A; be a maximal subset with compatible activities from Si, and a; be an activity from
Ay, with the earliest end time. If a; = a,, = done. If a; # a,,, then consider
Al = Ay —{a;} U{an}. A} consists of compatible activities and is also maximal because
| Akl = | Akl

|



Algorithm RecursiveActivitySelect(s, f, k, n)

Input:  Sequence of start and end points (s;, fi), 1 <i<n, s; < fi, fi < fi+1
foralli. 1<k <n
Output: Set of all compatible activitivies.

m<+ k+1
while m < n and s, < f do
‘7 m+—m-—+1

if m <n then
- return {a,,} U RecursiveActivitySelect(s, f, m,n)
else
‘ return ()

34



Algorithm IterativeActivitySelect(s, f, n)

Input:  Sequence of start and end points (s;, fi), 1 <i<n, s; < fi, fi < fi+1
for all 7.
Output: Maximal set of compatible activities.
A {al}
k<+1
for m + 2 to n do
if s, > fi then
A+ AU{an}
k< m

return A

Runtime of both algorithms:
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Algorithm IterativeActivitySelect(s, f, n)

Input:  Sequence of start and end points (s;, fi), 1 <i<n, s; < fi, fi < fi+1
for all 7.
Output: Maximal set of compatible activities.
A {al}
k<+1
for m + 2 to n do
if s, > fi then
A+ AU{an}
k< m

return A

Runtime of both algorithms: ©(n)
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Class Problem

Consider the following set of activities with their respective start and finish
times:

Activity Start Time Finish Time

A 0 4
B 5 6
C 0 2
D 3 7
E 8 9
F 5 9

Exercise: Find the maximal set of compatible activities that can be
scheduled using the greedy algorithm for activity selection.

36



Solution: Greedy Algorithm

1. Sort activities based on finish times:
C—-A—-B—-D—-F—>F
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Solution: Greedy Algorithm

1. Sort activities based on finish times:
C—-A—-B—-D—-F—>F

2. Initialize the list of selected activities:
Selected = {C'}

3. lterate through the remaining activities:

m Ais not compatible with C (skip A)
m B is compatible with C = Selected = {C, B}
" -

4. The maximal set of compatible activities is:
Selected = {C, B, E'} 3



8. Recursive Problem-Solving Strategies




Recursive Problem-Solving Strategies

Divide and
Conquer

Brute Force
Enumeration

Backtracking Dynamic

Programming

Greedy
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Recursive Problem-Solving Strategies

Brute Force
Enumeration

Recursive Enu-
merability

DFS, BFS, all Per-
mutations, Tree
Traversal

Backtracking

Constraint Satis-
faction, Partial
Validation

n-Queen,
Sudoku,
m-Coloring,
SAT-Solving,
naive TSP

Divide and
Conquer

Optimal
Substructure

Binary Search,
Mergesort,
Quicksort,
Hanoi Towers,
FFT

Dynamic
Programming
Optimal
Substructure,
Overlapping
Subproblems
Bellman Ford,
Warshall, Rod-
Cutting, LAS,

Editing Distance,
Knapsack Prob-
lem DP

Greedy

Optimal
Substructure,
Greedy Choice
Property

Dijkstra, Kruskal,
Huffmann Cod-

ing

39



9. Huffman Coding




Huffman’'s Idea

Tree construction bottom up

m Start with the set C of code
words
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Huffman’'s Idea

Tree construction bottom up
m Start with the set C of code

words / \
m Replace iteriatively the two 30
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Huffman’'s Idea

. 140
Tree construction bottom up

m Start with the set C of code
words

m Replace iteriatively the two
nodes with smallest

frequency by a new parent
node.

a

30,

N

4
ey

b3 c¢12 di16 e9 f5
A Ot ©l10 gol 000 ooo

4



Algorithm Huffman(C)

Input: code words ¢ € C
Output: Root of an optimal code tree

n <+ |C|
Q<+ C
fori=1ton—1do
allocate a new node z
z.left <— ExtractMin(Q) // extract word with minimal frequency.
z.right < ExtractMin(Q)
z.freq < z.left.freq + z.right.freq

 Insert(Q, 2)
return ExtractMin(Q)
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10. In-Class-Exercise (practical)

Complement the DP implementation to compute an
optimal search tree. — CodeExpert

43



11. Hints for currenttasks

Huffman Coding

4t



Huffman: Frequencies

Usestd::unordered_map(#include <unordered_map>)

std::unordered_map<char, int> frequencies;
/] ...

++frequencies(['a'];

++frequencies['x'];

++frequencies['a'];

// A map is a container of key-value pairs (std::pair).
// Output all entries:
for (auto x:observations){
std::cout << "observations of " << x.first << ":" << x.second << '\n';

3
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Huffman: Min Heap

Usestd::priority_queue(#include <queue>)

struct MyClass {

int x;

MyClass(int X): x{X} {}
s

struct compare {
bool operator() (const MyClass& a, const MyClass& b) const {
return a.x < b.x;

}
};

std::priority_queue<MyClass, std::vector<MyClass>, compare> q;
q.push(MyClass(10)) ;
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Huffman: Shared Pointers [optional]

Shared Pointers std: :shared_ptr (#include <memory>)

struct SNode {

int value;

std: :shared_ptr<SNode> left;

std: :shared_ptr<SNode> right;

SNode(int v): value{v}, left{nullptr}, right{nullptr} {}

}’

// A graph in which node 7 is shared: // 0
SNode* root = new SNode(0); // / \
root->left = new SNode(1); /712
root->right = new SNode(2); // / \
root->right->left = new SNode(7); // \/
root->right->right = root->right->left; // 7

root->left = nullptr; // Node 1 can and should be deallocated (deleted) now
root->right->left = nullptr; // Node 7 must not yet be deallocated
root->right->right = nullptr; // Node 7 can and should be deallocated now

Automated memory management, see Code Expert example 47



Huffman: Tree Nodes

using SharedNode = std::shared_ptr<Node>;

struct Node {
char value;
int frequency;
SharedNode left;
SharedNode right;

// constructor for leafs
Node(char v, int f):

value{v}, frequency{f}, left{nullptr}, right{nullptr}
{

// constructor for inner nodes
Node (SharedNode 1, SharedNode r):

value{0}, frequency{l->frequency + r->frequency}, left{l}, right{r}
{3+

48



Huffman

Gegeben sind fiinf Buchstaben mit re- Five characters (keys) with relative
lativer Haufigkeit (Anzahl Zugriffe) wie frequency (number of accesses) are given
folgt. Erstellen Sie mit Hilfe des Huffman- as follows. Using the Huffman algorithm
Algorithmus einen optimalen Codierungs- provide an optimal code tree. Enter the
baum. Tragen Sie den resultierenden Code corresponding code into the table.

in der Tabelle ein.

char a b c d e
freq 29 10 9 21 31
Code
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Huffman - Solution

Gegeben sind finf Buchstaben mit re-
lativer Haufigkeit (Anzahl Zugriffe) wie
folgt. Erstellen Sie mit Hilfe des Huffman-
Algorithmus einen optimalen Codierungs-
baum. Tragen Sie den resultierenden Code
in der Tabelle ein.

Five characters (keys) with relative
frequency (number of accesses) are given
as follows. Using the Huffman algorithm
provide an optimal code tree. Enter the
corresponding code into the table.

40

100

60

9(c) 10(b) 21(d) 29(a) 3i(e)
b and ¢ must have 3 bits and (only) share the first two bits,
a and e must have 2 bits and (only) share the first bit,
d must have two bits and (only) share the first bit with b and c.

char a b c d e
freq 29 10 9 21 31
Code || 5, 001 000 01 11
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12. Outro




General Questions?
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See you next time

Have a nice week!
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