
Red-Black Tree Example

Every red-black tree is also a search tree. Red-black trees also have the following properties, which enable

us to achieve a better runtime for some operations:

• red edges go from node to its left child (“left-leaning”)

• there are no nodes with two red edges

• each path from root to leaf has the same number of black edges (“perfectly black balanced”)

The basic idea of operations on red-black trees is to restore the above-mentioned properties after the

operation by means of rotatins, color changes, push-ups and push-ups. When to use which operation is

outlined in the lecture slides1 and lecture document2

1(https://lec.inf.ethz.ch/DA/2024/slides/daLecture10.en.pdf)
2(https://lec.inf.ethz.ch/DA/2024/lecture_notes/dsaln10.pdf)

1

https://lec.inf.ethz.ch/DA/2024/slides/daLecture10.en.pdf
https://lec.inf.ethz.ch/DA/2024/lecture_notes/dsaln10.pdf


Beispiel “Insertion into Red Black Tree”

Insert the numbers 1, . . . , 7 one after the other into an (initially empty) red-black tree and draw the

tree after each step.

insert(1)

1

insert(2): add

1

2

insert(2): rotate_left

(because right child is red)

2

1

insert(3): add

2

1 3

insert(3): push_up

(because two children are

red)

2

1 3

insert(4): add

2

1 3

4

insert(4): rotate_left

(because right child is red)

2

1 4

3

insert(5): add

2

1 4

3 5

insert(5): push_up

(because two children are red)

2

1 4

3 5

insert(5): rotate_left

(because right child is red)

4

2

1 3

5

2



Beispiel “Insertion into Red Black Tree (continued)”

insert(6): add

4

2

1 3

5

6

insert(6): rotate_left

(because right child is red)

4

2

1 3

6

5

insert(7): add

4

2

1 3

6

5 7

insert(7): push_up

(because two children are red)

4

2

1 3

6

5 7

insert(7): push_up

(because two children are red)

4

2

1 3

6

5 7

3


