
Red-Black Tree Example

Every red-black tree is also a search tree. Red-black trees also have the following properties, which enable

us to achieve a better runtime for some operations:

• red edges go from node to its left child (“left-leaning”)

• there are no nodes with two red edges

• each path from root to leaf has the same number of black edges (“perfectly black balanced”)

The basic idea of operations on red-black trees is to restore the above-mentioned properties after the

operation by means of rotatins, color changes, push-ups and push-ups. When to use which operation is

outlined in the lecture slides1 and lecture document2

1(https://lec.inf.ethz.ch/DA/2024/slides/daLecture10.en.pdf)
2(https://lec.inf.ethz.ch/DA/2024/lecture_notes/dsaln10.pdf)
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Beispiel “Insertion into Red Black Tree”

Insert the numbers 1, . . . , 7 one after the other into an (initially empty) red-black tree and draw the

tree after each step.
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Beispiel “Insertion into Red Black Tree (continued)”
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