

Datastructures and Algorithms

Introduction, Logistics, Asymptotics $(\mathcal{O}, \Omega, \Theta)$

Adel Gavranović — ETH Zürich — 2025

Overview

Learning Objectives Exercise Management Repetition Theory Examples and Quiz on Theory Quiz on Asymptotic Running Time of Program Fragments Formulas and their Derivation* Past Exam Ouestions Tips for code expert

n.ethz.ch/~agavranovic

1. Intro

Hello, World!

Welcome!

2. Follow-up

Follow-up from last session

Follow-up from last session

■ This is where I explain things I missed (or messed up) in last week's session

3. Feedback regarding code expert

General things regarding **code** expert

General things regarding code expert

- This is where I mention very common mistakes that were made in the exercises on **code** expert
- Emails are welcome too

Any questions regarding code expert on your part?

Any questions regarding **code** expert on your part?

■ This is where you'll have a chance to ask this regarding code expert that you think might be relevant for the class (hint: it almost always is)

4. Learning Objectives

Objectives

Objectives

- ☐ Know how the course is built up
- \square Understand the definitions of \mathcal{O} , Ω , and Θ
- \square Understand the uses of \mathcal{O} , Ω , and Θ

5. Summary

Getting on the same page

PAModel

Pother never)

D

Getting on the same page

■ This is where we could talk about what happened during the week if you want to

6. Exercise Management

Exercises

- Exercises available at lecture time.
- Preliminary discussion in the following recitation session
- Submit the exercise at the lecture two weeks later. Exception: for the first exercise you only have one week to finish.
- Dicussion of the exercise in the recitation session after the deadline. Feedback within a week after discussion.

7. Repetition Theory

■ What is a problem?

- What is a problem?
- What is an algorithm?

- What is a problem?
- What is an algorithm?
 - → well-defined computing procedure to compute output data from input data.

- What is a problem?
- What is an algorithm?
 - → well-defined computing procedure to compute output data from input data.

■ What is a program?

- What is a problem?
- What is an algorithm?
 - → well-defined computing procedure to compute output data from input data.
- What is a program?
 - → Concrete implementation of an algorithm

Problems, Algorithms and Programs

Efficiency

-	Program	Computing time	Measurable value on an <u>actual machine.</u>
	Algorithm	Cost	Number of elementary operations
	Problem	Complexity	Minimal (asymptotic) cost over all algorithms that solve the problem.

Efficiency

Program	Computing time	Measurable value on an actual machine.
Algorithm	Cost	Number of elementary operations
Problem	Complexity	Minimal (asymptotic) cost over all algorithms that solve the problem.

ightharpoonup Estimation of cost or computing time depending on the input size, denoted by n.

■ What are $\Omega(g(n))$, $\Theta(g(n))$, $\mathcal{O}(g(n))$?

- What are $\Omega(g(n))$, $\Theta(g(n))$, $\mathcal{O}(g(n))$?
- → Sets of functions!

- What are $\Omega(g(n))$, $\Theta(g(n))$, $\mathcal{O}(g(n))$?
- → Sets of functions!

subset	$A \subseteq B$
proper subset	$A \subsetneq B$
intersection	$A \cap B$

Given: function $\mathbf{Z}: \mathbb{N} \to \mathbb{R}$.

Definition:

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, n_0 \in \mathbb{N} | \forall n \geq n_0 : 0 \leq f(n) \leq \underline{c} \cdot g(n) \}
\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, n_0 \in \mathbb{N} | \forall n \geq n_0 : 0 \leq \underline{c} \cdot g(n) \leq f(n) \}
\Theta(g) = \mathcal{O}(g) \cap \Omega(g)$$

Intuition:

 $f \in \mathcal{O}(g)$: f grows asymptotically **not faster** than g. Algorithm with running time f is **not worse** than any other algorithm with g.

 $f \in \Omega(g)$: f grows asymptotically **not slower** than g. Algorithm with running time f is **not better** than any other algorithm with g.

 $f \in \Theta(g)$: f grows asymptotically **as fast** as g. Algorithm with running time f is **as good as** any other algorithm with g.

Used less often

Given: function $\mathbf{\xi}: \mathbb{N} \to \mathbb{R}$. Definition:

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, n_0 \in \mathbb{N} | \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$
$$o(g) = \{ f : \mathbb{N} \to \mathbb{R} | \forall c > 0 \ \exists n_0 \in \mathbb{N} | \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

$$\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, n_0 \in \mathbb{N} | \forall n \ge n_0 : 0 \le c \cdot g(n) \le f(n) \}$$

$$\omega(g) = \{ f : \mathbb{N} \to \mathbb{R} | \forall c > 0 \ \exists n_0 \in \mathbb{N} | \forall n \ge n_0 : 0 \le c \cdot g(n) \le f(n) \}$$

 $f \in o(g)$: f grows much slower than g $f \in \omega(g)$: f grows much faster than g

Useful information for the exercise

Theorem 1

$$-$$
 1. $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f \in \mathcal{O}(g), \ \mathcal{O}(f) \subset \mathcal{O}(g).$

- 2. $\lim_{n\to\infty} \frac{f(n)}{g(n)} = C > 0$ (C constant) $\Rightarrow f \in \Theta(g)$.
- 3. $\frac{f(n)}{g(n)} \underset{n \to \infty}{\longrightarrow} \infty \Rightarrow g \in \mathcal{O}(f), \mathcal{O}(g) \subsetneq \mathcal{O}(f).$

$$f(n) \quad 3n^{2} - \frac{3}{2} \frac{2}{5} \frac{f}{5} = \frac{n^{2}}{n^{3}}$$

$$g \in O(3n^{2})$$

$$g \in O(f) \iff f \in O(g)$$

Useful information for the exercise

Theorem 1

- 1. $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f \in \mathcal{O}(g), \, \mathcal{O}(f) \subsetneq \mathcal{O}(g).$
- 2. $\lim_{n\to\infty}\frac{f(n)}{g(n)}=C>0$ (C constant) $\Rightarrow f\in\Theta(g)$.
- 3. $\frac{f(n)}{g(n)} \underset{n \to \infty}{\to} \infty \Rightarrow g \in \mathcal{O}(f), \mathcal{O}(g) \subsetneq \mathcal{O}(f).$

- 1. $\lim_{n\to\infty} \frac{n}{n^2} = 0 \Rightarrow n \in \mathcal{O}(n^2), \, \mathcal{O}(n) \subsetneq \mathcal{O}(n^2).$
- 2. $\lim_{n\to\infty} \frac{2n}{n} = 2 > 0 \Rightarrow 2n \in \Theta(n)$.
- 3. $\frac{n^2}{n} \underset{n \to \infty}{\longrightarrow} \infty \Rightarrow n \in \mathcal{O}(n^2), \mathcal{O}(n) \subsetneq \mathcal{O}(n^2).$

Property

$$f_1 \in \mathcal{O}(g), f_2 \in \mathcal{O}(g) \Rightarrow f_1 + f_2 \in \mathcal{O}(g)$$

8. Examples and Quiz on Theory

$$\mathcal{O}(g) = \{f: \mathbb{N} \to \mathbb{R} | \exists c > 0, \exists n_0 \in \mathbb{N}: \forall n \geq n_0: 0 \leq f(n) \leq c \cdot g(n) \}$$

$$\frac{f(n)}{3n+4} \qquad \text{O(n)} \qquad \text{C=} \qquad \qquad \text{O(n)}$$

$$\frac{n^2+100n}{n+\sqrt{n}} \qquad \text{C=O(3)} \qquad \text{N=O(3)}$$

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

$$\begin{array}{lll} f(n) & f \in \mathcal{O}(?) & \mathsf{Example} \\ 3n+4 & \mathcal{O}(n) & c=4, n_0=4 \\ 2n & \\ n^2+100n & \\ n+\sqrt{n} & \end{array}$$

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

f(n)	$f \in \mathcal{O}(?)$	Example
3n + 4	$\mathcal{O}(n)$	$c = 4, n_0 = 4$
2n	$\mathcal{O}(n)$	$c=2, n_0=0$
$n^2 + 100n$		
$n + \sqrt{n}$		

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

f(n)	$f \in \mathcal{O}(?)$	Example
3n+4	$\mathcal{O}(n)$	$c = 4, n_0 = 4$
2n	$\mathcal{O}(n)$	$c=2, n_0=0$
$n^2 + 100n$	$\mathcal{O}(n^2)$	$c = 2, n_0 = 100$
$n+\sqrt{n}$		

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

f(n)	$f \in \mathcal{O}(?)$	Example
3n+4	$\mathcal{O}(n)$	$c = 4, n_0 = 4$
2n	$\mathcal{O}(n)$	$c=2, n_0=0$
$n^2 + 100n$	$\mathcal{O}(n^2)$	$c = 2, n_0 = 100$
$n + \sqrt{n}$	$\mathcal{O}(n)$	$c=2, n_0=1$

 $n \in \mathcal{O}(n^2)?$

■ $n \in \mathcal{O}(n^2)$? correct, but too imprecise:

■ $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.

■ $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.

- $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.
- $3n^2 \in \mathcal{O}(2n^2)$?

- $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.
- $3n^2 \in \mathcal{O}(2n^2)$? correct but uncommon:

- $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.
- $3n^2 \in \mathcal{O}(2n^2)$? correct but uncommon: Omit constants: $3n^2 \in \mathcal{O}(n^2)$.

- $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.
- $3n^2 \in \mathcal{O}(2n^2)$? correct but uncommon: Omit constants: $3n^2 \in \mathcal{O}(n^2)$.

- $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.
- $3n^2 \in \mathcal{O}(2n^2)$? correct but uncommon: Omit constants: $3n^2 \in \mathcal{O}(n^2)$.
- $2n^2 \in \mathcal{O}(n)?$

- $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.
- $3n^2 \in \mathcal{O}(2n^2)$? correct but uncommon: Omit constants: $3n^2 \in \mathcal{O}(n^2)$.
- $2n^2 \in \mathcal{O}(n)$? is wrong:

- $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.
- $3n^2 \in \mathcal{O}(2n^2)$? correct but uncommon: Omit constants: $3n^2 \in \mathcal{O}(n^2)$.
- $2n^2 \in \mathcal{O}(n)$? is wrong: $\frac{2n^2}{n} = 2n \underset{n \to \infty}{\to} \infty$!

- $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.
- $3n^2 \in \mathcal{O}(2n^2)$? correct but uncommon: Omit constants: $3n^2 \in \mathcal{O}(n^2)$.
- $2n^2 \in \mathcal{O}(n)$? is wrong: $\frac{2n^2}{n} = 2n \underset{n \to \infty}{\longrightarrow} \infty$!

- $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.
- $3n^2 \in \mathcal{O}(2n^2)$? correct but uncommon: Omit constants: $3n^2 \in \mathcal{O}(n^2)$.
- $2n^2 \in \mathcal{O}(n)$? is wrong: $\frac{2n^2}{n} = 2n \underset{n \to \infty}{\to} \infty$!

- $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.
- $3n^2 \in \mathcal{O}(2n^2)$? correct but uncommon: Omit constants: $3n^2 \in \mathcal{O}(n^2)$.
- $2n^2 \in \mathcal{O}(n)$? is wrong: $\frac{2n^2}{n} = 2n \underset{n \to \infty}{\to} \infty$!
- lacksquare $\mathcal{O}(n) \subseteq \mathcal{O}(n^2)$? is correct

- $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.
- $3n^2 \in \mathcal{O}(2n^2)$? correct but uncommon: Omit constants: $3n^2 \in \mathcal{O}(n^2)$.
- $2n^2 \in \mathcal{O}(n)$? is wrong: $\frac{2n^2}{n} = 2n \underset{n \to \infty}{\to} \infty$!
- lacksquare $\mathcal{O}(n) \subseteq \mathcal{O}(n^2)$? is correct

- $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.
- $3n^2 \in \mathcal{O}(2n^2)$? correct but uncommon: Omit constants: $3n^2 \in \mathcal{O}(n^2)$.
- $2n^2 \in \mathcal{O}(n)$? is wrong: $\frac{2n^2}{n} = 2n \underset{n \to \infty}{\rightarrow} \infty$!
- $\mathcal{O}(n) \subseteq \mathcal{O}(n^2)$? is correct
- $\Theta(n) \subseteq \Theta(n^2)?$

- $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.
- $3n^2 \in \mathcal{O}(2n^2)$? correct but uncommon: Omit constants: $3n^2 \in \mathcal{O}(n^2)$.
- $2n^2 \in \mathcal{O}(n)$? is wrong: $\frac{2n^2}{n} = 2n \underset{n \to \infty}{\rightarrow} \infty$!
- $\mathcal{O}(n) \subseteq \mathcal{O}(n^2)$? is correct
- $lackbox{\blacksquare}\ \Theta(n)\subseteq\Theta(n^2)$? is wrong

- $n \in \mathcal{O}(n^2)$? correct, but too imprecise: $n \in \mathcal{O}(n)$ and even $n \in \Theta(n)$.
- $3n^2 \in \mathcal{O}(2n^2)$? correct but uncommon: Omit constants: $3n^2 \in \mathcal{O}(n^2)$.
- $2n^2 \in \mathcal{O}(n)$? is wrong: $\frac{2n^2}{n} = 2n \underset{n \to \infty}{\to} \infty$!
- $\mathcal{O}(n) \subseteq \mathcal{O}(n^2)$? is correct
- $lackbox{lack}\Theta(n)\subseteq\Theta(n^2)$? is wrong $n
 ot\in\Omega(n^2)\supset\Theta(n^2)$

 $1 \in \mathcal{O}(15)$?

$$1 \in \mathcal{O}(15)$$
 ?

$$1 \in \mathcal{O}(15)$$
 ? \checkmark better $1 \in \mathcal{O}(1)$ $2n+1 \in \Theta(n)$?

$$1 \in \mathcal{O}(15)$$
 ? \checkmark better $1 \in \mathcal{O}(1)$ $2n+1 \in \Theta(n)$? \checkmark

$$1 \in \mathcal{O}(15)$$
? \checkmark better $1 \in \mathcal{O}(1)$ $2n+1 \in \Theta(n)$? \checkmark \checkmark $\sqrt{n} \in \mathcal{O}(n)$?

$$1 \in \mathcal{O}(15)$$
 ? \checkmark better $1 \in \mathcal{O}(1)$ $2n+1 \in \Theta(n)$? \checkmark \checkmark \checkmark

$$1 \in \mathcal{O}(15) ? \qquad \checkmark \text{ better } 1 \in \mathcal{O}(1)$$

$$2n + 1 \in \Theta(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \mathcal{O}(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \Omega(n) ?$$

$$1 \in \mathcal{O}(15) ? \qquad \checkmark \text{ better } 1 \in \mathcal{O}(1)$$

$$2n + 1 \in \Theta(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \mathcal{O}(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \Omega(n) ? \qquad \checkmark$$

$$1 \in \mathcal{O}(15) ? \qquad \checkmark \text{ better } 1 \in \mathcal{O}(1)$$

$$2n+1 \in \Theta(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \mathcal{O}(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \Omega(n) ? \qquad X$$

$$n \in \Omega(\sqrt{n}) ?$$

$$1 \in \mathcal{O}(15) ? \qquad \checkmark \text{ better } 1 \in \mathcal{O}(1)$$

$$2n+1 \in \Theta(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \mathcal{O}(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \Omega(n) ? \qquad \checkmark$$

$$n \in \Omega(\sqrt{n}) ? \qquad \checkmark$$

$$1 \in \mathcal{O}(15) ? \qquad \checkmark \text{ better } 1 \in \mathcal{O}(1)$$

$$2n+1 \in \Theta(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \mathcal{O}(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \Omega(n) ? \qquad \checkmark$$

$$n \in \Omega(\sqrt{n}) ? \qquad \checkmark$$

$$\sqrt{n} \notin \Theta(n) ? \qquad \checkmark$$

$$1 \in \mathcal{O}(15) ? \qquad \checkmark \text{ better } 1 \in \mathcal{O}(1)$$

$$2n+1 \in \Theta(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \mathcal{O}(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \Omega(n) ? \qquad \times$$

$$n \in \Omega(\sqrt{n}) ? \qquad \checkmark$$

$$\sqrt{n} \notin \Theta(n) ? \qquad \checkmark$$

$$1 \in \mathcal{O}(15) ? \qquad \checkmark \text{ better } 1 \in \mathcal{O}(1)$$

$$2n + 1 \in \Theta(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \mathcal{O}(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \Omega(n) ? \qquad \checkmark$$

$$n \in \Omega(\sqrt{n}) ? \qquad \checkmark$$

$$\sqrt{n} \notin \Theta(n) ? \qquad \checkmark$$

$$\mathcal{O}(\sqrt{n}) \subset \mathcal{O}(n) ? \qquad \checkmark$$

$$1 \in \mathcal{O}(15) ? \qquad \checkmark \text{ better } 1 \in \mathcal{O}(1)$$

$$2n + 1 \in \Theta(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \mathcal{O}(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \Omega(n) ? \qquad \checkmark$$

$$n \in \Omega(\sqrt{n}) ? \qquad \checkmark$$

$$\sqrt{n} \notin \Theta(n) ? \qquad \checkmark$$

$$\mathcal{O}(\sqrt{n}) \subset \mathcal{O}(n) ? \qquad \checkmark$$

$$1 \in \mathcal{O}(15) ? \qquad \checkmark \text{ better } 1 \in \mathcal{O}(1)$$

$$2n+1 \in \Theta(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \mathcal{O}(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \Omega(n) ? \qquad \checkmark$$

$$n \in \Omega(\sqrt{n}) ? \qquad \checkmark$$

$$\sqrt{n} \notin \Theta(n) ? \qquad \checkmark$$

$$\mathcal{O}(\sqrt{n}) \subset \mathcal{O}(n) ? \qquad \checkmark$$

$$2^n \notin \mathcal{O}(\exp(n)) ? \qquad \checkmark$$

$$2^n \notin \mathcal{O}(2.7.)$$

$1 \in \mathcal{O}(15) ?$	✓ better $1 \in \mathcal{O}(1)$
$2n+1\in\Theta(n)\ ?$	✓
$\sqrt{n} \in \mathcal{O}(n)$?	✓
$\sqrt{n} \in \Omega(n)$?	X
$n \in \Omega(\sqrt{n})$?	✓
$\sqrt{n} \notin \Theta(n)$?	✓
$\mathcal{O}(\sqrt{n}) \subset \mathcal{O}(n)$?	✓
$2^n \notin \mathcal{O}(\exp(n))$?	X

$$1 \in \mathcal{O}(15) ? \qquad \checkmark \text{ better } 1 \in \mathcal{O}(1)$$

$$2n+1 \in \Theta(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \mathcal{O}(n) ? \qquad \checkmark$$

$$\sqrt{n} \in \Omega(n) ? \qquad \checkmark$$

$$n \in \Omega(\sqrt{n}) ? \qquad \checkmark$$

$$\sqrt{n} \notin \Theta(n) ? \qquad \checkmark$$

$$\mathcal{O}(\sqrt{n}) \subset \mathcal{O}(n) ? \qquad \checkmark$$

$$2^n \notin \mathcal{O}(\exp(n)) ? \qquad \checkmark$$

... Then I simply buy a new machine!


```
Komplexität (speed \times 10) (speed \times 100) \log_2 n n n^2 2^n
```


Komplexität	(speed $\times 10$)	(speed $\times 100$)
$\log_2 n$	$n \to n^{10}$	$n \to n^{100}$
n		
n^2		
2^n		

(speed $\times 10$)	(speed $\times 100$)
$n \to n^{10}$	$n \to n^{100}$
$n \to 10 \cdot n$	$n \to 100 \cdot n$
	$n \to n^{10}$

Komplexität	(speed $\times 10$)	(speed $\times 100$)
$\log_2 n$	$n \to n^{10}$	$n \to n^{100}$
n	$n \to 10 \cdot n$	$n \to 100 \cdot n$
n^2	$n \to 3.16 \cdot n$	$n \to 10 \cdot n$
2^n		

 $^{^{1}}$ To see this, you set $f(n') = c \cdot f(n)$ (c = 10 or c = 100) and solve for n'

9. Quiz on Asymptotic Running Time of Program Fragments


```
void run(int n) {
  for (int i = 1; i < n; ++i) {
    op();
}
How often is op() called as a function o n?</pre>
```

$$\sum_{i=1}^{n-1} 1 = n-1 \in G(n)$$


```
void run(int n){
  for (int i = 1; i<n; ++i)
  op();
}</pre>
```

$$\sum_{i=1}^{n-1} 1 = n - 1 \in \Theta(n)$$


```
void run(int n){
  for (int i = 1; i<n; ++i)
   for (int j = 1; j<n; ++j)
     op();
}</pre>
```

$$\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} 1 = (n-1)^2 =$$


```
void run(int n){
  for (int i = 1; i<n; ++i)
   for (int j = 1; j<n; ++j)
     op();
}</pre>
```

$$\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} 1 = \sum_{i=1}^{n-1} (n-1) = (n-1) \cdot (n-1) \in \Theta(n^2)$$


```
void run(int n){
  for (int i = 1; i<n; ++i)
   for (int j = i; j<n; ++j)
     op();
}</pre>
```



```
void run(int n){
  for (int i = 1; i < n; ++i)
     for (int j = i; j < n; ++j)
        op();
                \sum_{i=1}^{n-1} \sum_{j=i}^{n-1} 1 = \left(\sum_{i=1}^{n-1} (n-i)\right) = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} \in \Theta(n^2)
How often is op() called as a function of n?
```



```
void run(int n){
  for (int i = 1; i<n; ++i){
    op();
    for (int j = i; j<n; ++j)
       op();
    }
}
How often is op() called?</pre>
```

```
void run(int n){
  for (int i = 1: i < n: ++i){
     op();
     for (int j = i; j < n; ++j)
       op();
How often is op() called?
        \sum_{i=1}^{n-1} \left( 1 + \sum_{j=i}^{n-1} 1 \right) = \sum_{i=1}^{n-1} (1 + (n-i)) = n - 1 + \frac{n(n-1)}{2} \in \Theta(n^2)
```



```
void run(int n){
  for (int i = 1; i<n; ++i){
    op();
    for (int j = 1; j<i*i; ++j)
       op();
    }
}
How often is op() called?</pre>
```

```
void run(int n){
  for (int i = 1; i<n; ++i){
    op();
  for (int j = 1; j<i*i; ++j)
    op();
}</pre>
```

How often is op() called?

$$\sum_{i=1}^{n-1} \left(1 + \sum_{j=1}^{i^2 - 1} 1 \right) = \sum_{i=1}^{n-1} \left(1 + i^2 - 1 \right) = \sum_{i=1}^{n-1} i^2 \in \Theta(n^3)$$


```
void run(int n) {
  for(int i = 1; i <= n; ++i)
   for(int j = 1; j*j <= n; ++j)
    for(int k = n; k >= ② --k)
    op();
}
```



```
void run(int n){
  for(int i = 1; i <= n; ++i)
  for(int j = 1; j*j <= n; ++j)
  for(int k = n; k >= 2; --k)
  op();
}
```

$$\sum_{i=1}^{n} \sum_{j=1}^{\lceil \sqrt{n} \rceil} n - 1 \in \Theta\left(\sum_{i=1}^{n} n^{3/2}\right) = \Theta(\sqrt{n^5})$$


```
int f(int n){
    i=1;
    while (i <= n*n*n){
        i = i*2;
        op();
    }
    return i;
}</pre>
```



```
int f(int n){
   i=1;
   while (i \le n*n*n){
       i = i*2;
       op();
   return i;
                                               1073(n3) = 3107(N)
How often is op() called as a function of n?
```

 $|\{i \in \mathbb{N} : 2^i \le n^3\}| \in \Theta(\log_2 n^3) = \Theta(\log n) = \Theta(\log_2 n^3)$

10. Formulas and their Derivation*

$$\sum_{i=0}^{n} i = 1$$

$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2}$$

$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2}$$

Why?

$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2}$$

Why? Intuition

$$1 + \dots + 100 = (1 + 100) + (2 + 99) + (3 + 98) + \dots + (50 + 51)$$

$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2}$$

Why? Intuition

$$1 + \dots + 100 = (1 + 100) + (2 + 99) + (3 + 98) + \dots + (50 + 51)$$

More formally?

$$\sum_{i=0}^{n} (n-i) = ?$$

$$\sum_{i=0}^{n} (n-i) = \sum_{i=0}^{n} i$$

$$\sum_{i=0}^{n} (n-i) = \sum_{i=0}^{n} i$$

$$\Rightarrow 2 \cdot \sum_{i=0}^{n} i = \sum_{i=0}^{n} i + \sum_{i=0}^{n} (n-i)$$
$$= \sum_{i=0}^{n} (i + (n-i)) = \sum_{i=0}^{n} n = (n+1) \cdot n$$

$$\sum_{i=0}^{n} (n-i) = \sum_{i=0}^{n} i$$

$$\Rightarrow 2 \cdot \sum_{i=0}^{n} i = \sum_{i=0}^{n} i + \sum_{i=0}^{n} (n-i)$$
$$= \sum_{i=0}^{n} (i + (n-i)) = \sum_{i=0}^{n} n = (n+1) \cdot n$$

$$\sum_{i=0}^{n} i^2 = 1$$

$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

This you do not need to know by heart. But you should know that it is a polynomial of third degree.

How do you derive something like this?

How do you derive something like this? Interesting Trick: On the one hand

$$\sum_{i=0}^{n} i^3 - \sum_{i=1}^{n} (i-1)^3 = \sum_{i=0}^{n} i^3 - \sum_{i=0}^{n-1} i^3 = n^3,$$

How do you derive something like this? Interesting Trick: On the one hand

$$\sum_{i=0}^{n} i^3 - \sum_{i=1}^{n} (i-1)^3 = \sum_{i=0}^{n} i^3 - \sum_{i=0}^{n-1} i^3 = n^3,$$

on the other hand

$$\sum_{i=0}^{n} i^3 - \sum_{i=1}^{n} (i-1)^3 = \sum_{i=1}^{n} i^3 - \sum_{i=1}^{n} (i-1)^3$$
$$= \sum_{i=1}^{n} i^3 - (i-1)^3 = \sum_{i=1}^{n} 3 \cdot i^2 - 3 \cdot i + 1$$

$$\log_a y = x \Leftrightarrow a^x = y \quad (a > 0, y > 0)$$

$$a^{x} \cdot a^{y} = ?$$

$$\frac{a^{x}}{a^{y}} = ?$$

$$a^{x \cdot y} = ?$$

$$\log_{a} \frac{x}{y} = ?$$

$$\log_{a} x^{y} = ?$$

$$\log_{a} n! = ?$$

$$\log_{b} x = ?$$

$$a^{\log_{b} x} = ?$$

$$\log_a y = x \Leftrightarrow a^x = y \quad (a > 0, y > 0)$$

$$a^{x} \cdot a^{y} = a^{x+y} \qquad \log_{a}(x \cdot y) =?$$

$$\frac{a^{x}}{a^{y}} =? \qquad \log_{a} \frac{x}{y} =?$$

$$a^{x \cdot y} =? \qquad \log_{a} x^{y} =?$$

$$\log_{a} n! =?$$

$$\log_{b} x =? \qquad a^{\log_{b} x} =?$$

$$\log_a y = x \Leftrightarrow a^x = y \quad (a > 0, y > 0)$$

$$a^{x} \cdot a^{y} = a^{x+y} \qquad \log_{a}(x \cdot y) = ?$$

$$\frac{a^{x}}{a^{y}} = a^{x-y} \qquad \log_{a} \frac{x}{y} = ?$$

$$a^{x \cdot y} = ? \qquad \log_{a} x^{y} = ?$$

$$\log_{a} n! = ?$$

$$\log_{b} x = ? \qquad a^{\log_{b} x} = ?$$

$$\log_a y = x \Leftrightarrow a^x = y \quad (a > 0, y > 0)$$

$$a^{x} \cdot a^{y} = a^{x+y} \qquad \log_{a}(x \cdot y) = ?$$

$$\frac{a^{x}}{a^{y}} = a^{x-y} \qquad \log_{a} \frac{x}{y} = ?$$

$$a^{x \cdot y} = (a^{x})^{y} \qquad \log_{a} x^{y} = ?$$

$$\log_{a} n! = ?$$

$$\log_{b} x = ? \qquad a^{\log_{b} x} = ?$$

$$\log_a y = x \Leftrightarrow a^x = y \quad (a > 0, y > 0)$$

$$a^{x} \cdot a^{y} = a^{x+y} \qquad \log_{a}(x \cdot y) = ?$$

$$\frac{a^{x}}{a^{y}} = a^{x-y} \qquad \log_{a} \frac{x}{y} = ?$$

$$a^{x \cdot y} = (a^{x})^{y} \qquad \log_{a} x^{y} = ?$$

$$\log_{a} n! = ?$$

$$\log_{b} x = ? \qquad a^{\log_{b} x} = ?$$

$$\log_a y = x \Leftrightarrow a^x = y \quad (a > 0, y > 0)$$

$$a^{x} \cdot a^{y} = a^{x+y} \qquad \log_{a}(x \cdot y) = \log_{a} x + \log_{a} y$$

$$\frac{a^{x}}{a^{y}} = a^{x-y} \qquad \log_{a} \frac{x}{y} = ?$$

$$a^{x \cdot y} = (a^{x})^{y} \qquad \log_{a} x^{y} = ?$$

$$\log_{a} n! = ?$$

$$\log_{b} x = ? \qquad a^{\log_{b} x} = ?$$

$$\log_a y = x \Leftrightarrow a^x = y \quad (a > 0, y > 0)$$

$$a^{x} \cdot a^{y} = a^{x+y} \qquad \log_{a}(x \cdot y) = \log_{a} x + \log_{a} y$$

$$\frac{a^{x}}{a^{y}} = a^{x-y} \qquad \log_{a} \frac{x}{y} = \log_{a} x - \log_{a} y$$

$$a^{x \cdot y} = (a^{x})^{y} \qquad \log_{a} x^{y} = ?$$

$$\log_{a} n! = ?$$

$$\log_{b} x = ? \qquad a^{\log_{b} x} = ?$$

$$\log_a y = x \Leftrightarrow a^x = y \quad (a > 0, y > 0)$$

$$a^{x} \cdot a^{y} = a^{x+y} \qquad \log_{a}(x \cdot y) = \log_{a} x + \log_{a} y$$

$$\frac{a^{x}}{a^{y}} = a^{x-y} \qquad \log_{a} \frac{x}{y} = \log_{a} x - \log_{a} y$$

$$a^{x \cdot y} = (a^{x})^{y} \qquad \log_{a} x^{y} = y \log_{a} x$$

$$\log_{a} n! = ?$$

$$\log_{b} x = ? \qquad a^{\log_{b} x} = ?$$

$$\log_a y = x \Leftrightarrow a^x = y \quad (a > 0, y > 0)$$

$$a^{x} \cdot a^{y} = a^{x+y} \qquad \log_{a}(x \cdot y) = \log_{a} x + \log_{a} y$$

$$\frac{a^{x}}{a^{y}} = a^{x-y} \qquad \log_{a} \frac{x}{y} = \log_{a} x - \log_{a} y$$

$$a^{x \cdot y} = (a^{x})^{y} \qquad \log_{a} x^{y} = y \log_{a} x$$

$$\log_{a} n! = \sum_{i=1}^{n} \log i$$

$$\log_{b} x = ?$$

$$a^{\log_{b} x} = ?$$

$$\log_a y = x \Leftrightarrow a^x = y \quad (a > 0, y > 0)$$

$$a^{x} \cdot a^{y} = a^{x+y} \qquad \log_{a}(x \cdot y) = \log_{a} x + \log_{a} y$$

$$\frac{a^{x}}{a^{y}} = a^{x-y} \qquad \log_{a} \frac{x}{y} = \log_{a} x - \log_{a} y$$

$$a^{x \cdot y} = (a^{x})^{y} \qquad \log_{a} x^{y} = y \log_{a} x$$

$$\log_{a} n! = \sum_{i=1}^{n} \log i$$

$$\log_{b} x = \log_{b} a \cdot \log_{a} x \qquad a^{\log_{b} x} = ?$$

$$\log_a y = x \Leftrightarrow a^x = y \quad (a > 0, y > 0)$$

$$a^{x} \cdot a^{y} = a^{x+y}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$a^{x \cdot y} = (a^{x})^{y}$$

$$\log_{a} x = \log_{a} x - \log_{a} y$$

$$\log_{a} x^{y} = y \log_{a} x$$

$$\log_{a} x^{y} = y \log_{a} x$$

$$\log_{a} x^{y} = x \log_{a} x$$

$$\log_{a} x = x \log_{a} x$$

$$a^{\log_{a} x} = x^{\log_{a} x}$$

$$a^{\log_{a} x} = x^{\log_{a} x}$$

$$y = x \log_{a} x$$

$$y$$

$$\log_a y = x \Leftrightarrow a^x = y \quad (a > 0, y > 0)$$

$$a^{x} \cdot a^{y} = a^{x+y} \qquad \log_{a}(x \cdot y) = \log_{a} x + \log_{a} y$$

$$\frac{a^{x}}{a^{y}} = a^{x-y} \qquad \log_{a} \frac{x}{y} = \log_{a} x - \log_{a} y$$

$$a^{x \cdot y} = (a^{x})^{y} \qquad \log_{a} x^{y} = y \log_{a} x$$

$$\log_{a} n! = \sum_{i=1}^{n} \log_{i} i$$

$$\log_{b} x = \log_{b} a \cdot \log_{a} x \qquad a^{\log_{b} x} = x^{\log_{b} a}$$

To see the last line, replace $x \to a^{\log_a x}$

$$\frac{n^2}{2^n} \xrightarrow[n \to \infty]{}$$

$$\frac{n^2}{2^n} \xrightarrow[n \to \infty]{} 0$$

$$\frac{n^{10000}}{2^n} \xrightarrow[n \to \infty]{}?$$

$$\frac{n^{10000}}{2^n} \xrightarrow[n \to \infty]{} 0$$

$$\frac{n^c}{d^n} \xrightarrow[n \to \infty]{}$$

$$\frac{n^c}{d^n} \xrightarrow[n \to \infty]{} 0$$

$$\frac{n^c}{d^n} \underset{n \to \infty}{\longrightarrow} 0$$

because

$$\frac{n^c}{d^n} = \frac{2^{\log_2 n^c}}{2^{\log_2 d^n}} = 2^{c \cdot \log_2 n - n \log_2 d}$$

$$\frac{n}{\log n} \xrightarrow[n \to \infty]{}$$

$$\frac{n}{\log n} \xrightarrow[n \to \infty]{} \infty$$

$$\frac{n\log n}{\sqrt{n}} \xrightarrow[n \to \infty]{} ?$$

$$\frac{n\log n}{\sqrt{n}} \xrightarrow[n \to \infty]{} \infty$$

$$\frac{\log_2 n^2}{\sqrt{n}} \underset{n \to \infty}{\longrightarrow} ?$$

$$\frac{\log_2 n^2}{\sqrt{n}} \underset{n \to \infty}{\longrightarrow} 0$$

$$\frac{\log_2 n^2}{\sqrt{n}} \underset{n \to \infty}{\longrightarrow} 0$$

$$\log_2 n^2 = 2\log_2 n$$

$$\sqrt{n} = n^{1/2} = 2^{\log_2 n^{1/2}} = \left(\sqrt{2}\right)^{\log_2 n}$$

$$\frac{\log n^2}{\sqrt{n}} = 2\frac{\log_2 n}{\left(\sqrt{2}\right)^{\log_2 n}}$$

which behaves because of $\log_2 n \to \infty$ for $n \to \infty$ like $2\frac{n}{\left(\sqrt{2}\right)^n}$

11. Past Exam Questions

Past Exam Questions

Past Exam Questions

■ If time allows, this is where we could have a look at old exam questions and go over them together

12. Tips for **code** expert

Tips for upcoming code expert exercises

Task "Taskname"

Tips for upcoming **code** expert exercises

Task "Taskname"

■ This is where I give you hints and tips for the upcoming **code** expert exercises

13. Outro

General Questions?

General Questions?

■ This is where you can ask general questions regarding the course or bring up things I didn't cover during the session

See you next time!

Have a nice week!

