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1. Intro
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Hello, World!

Welcome!
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2. Follow-up
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Follow-up from last session

This is where I explain things I missed (or messed up) in last week’s
session
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3. Feedback regarding code expert
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General things regarding code expert

This is where I mention very common mistakes that were made in the
exercises on code expert
Emails are welcome too
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Any questions regarding code expert on your part?

This is where you’ll have a chance to ask thigs regarding code expert
that you think might be relevant for the class (hint: it almost always is)
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4. Learning Objectives
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Objectives

□ Know how the course is built up
□ Understand the definitions of O, Ω, and Θ
□ Understand the uses of O, Ω, and Θ
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5. Summary
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Getting on the same page

This is where we could talk about what happened during the week if
you want to
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Exercises
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Exercises available at lecture time.
Preliminary discussion in the following recitation session
Submit the exercise at the lecture two weeks later. Exception: for the first
exercise you only have one week to finish.
Dicussion of the exercise in the recitation session after the deadline. Feedback
within a week after discussion.
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7. Repetition Theory
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Warm-up

What is a problem?
What is an algorithm?

➜ well-defined computing procedure to compute output data from input data.

What is a program?

➜ Concrete implementation of an algorithm
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Problems, Algorithms and Programs

Problem

Algorithm

solves a

Program

implements an
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Warm-up

Problem

Algorithms

can be solved by multiple

Program

can be implemented in various ways
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Efficiency

Program Computing time Measurable value on an actual machine.

Algorithm Cost Number of elementary operations

Problem Complexity Minimal (asymptotic) cost over all algorithms that
solve the problem.

➜ Estimation of cost or computing time depending on the input size, denoted by n.
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Asymptotic behavior

What are Ω(g(n)), Θ(g(n)), O(g(n))?
➜ Sets of functions!

subset A ⊆ B
proper subset A ⊊ B
intersection A ∩ B
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Asymptotic behavior
Given: function f : N → R.
Definition:

O(g) = {f : N → R|∃c > 0, n0 ∈ N|∀n ≥ n0 : 0 ≤ f(n) ≤ c · g(n)}
Ω(g) = {f : N → R|∃c > 0, n0 ∈ N|∀n ≥ n0 : 0 ≤ c · g(n) ≤ f(n)}
Θ(g) = O(g) ∩ Ω(g)

Intuition:
f ∈ O(g): f grows asymptotically not faster than g. Algorithm with running
time f is not worse than any other algorithm with g.
f ∈ Ω(g): f grows asymptotically not slower than g. Algorithm with running
time f is not better than any other algorithm with g.
f ∈ Θ(g): f grows asymptotically as fast as g. Algorithm with running time f
is as good as any other algorithm with g.
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Used less often

Given: function f : N → R.
Definition:

O(g) = {f : N → R|∃c > 0, n0 ∈ N|∀n ≥ n0 : 0 ≤ f(n) ≤ c · g(n)}
o(g) = {f : N → R|∀c > 0 ∃n0 ∈ N|∀n ≥ n0 : 0 ≤ f(n) ≤ c · g(n)}

Ω(g) = {f : N → R|∃c > 0, n0 ∈ N|∀n ≥ n0 : 0 ≤ c · g(n) ≤ f(n)}
ω(g) = {f : N → R|∀c > 0 ∃n0 ∈ N|∀n ≥ n0 : 0 ≤ c · g(n) ≤ f(n)}

f ∈ o(g): f grows much slower than g

f ∈ ω(g): f grows much faster than g
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Useful information for the exercise

Theorem 1

1. limn→∞
f(n)
g(n) = 0 ⇒ f ∈ O(g), O(f) ⊊ O(g).

2. limn→∞
f(n)
g(n) = C > 0 (C constant) ⇒ f ∈ Θ(g).

3. f(n)
g(n) →

n→∞
∞ ⇒ g ∈ O(f), O(g) ⊊ O(f).

Example 2

1. limn→∞
n
n2 = 0 ⇒ n ∈ O(n2), O(n) ⊊ O(n2).

2. limn→∞
2n
n

= 2 > 0 ⇒ 2n ∈ Θ(n).
3. n2

n
→

n→∞
∞ ⇒ n ∈ O(n2), O(n) ⊊ O(n2).
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Property

f1 ∈ O(g), f2 ∈ O(g) ⇒ f1 + f2 ∈ O(g)
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8. Examples and Quiz on Theory
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Examples

O(g) = {f : N → R| ∃c > 0, ∃n0 ∈ N : ∀n ≥ n0 : 0 ≤ f(n) ≤ c · g(n)}

f(n) f ∈ O(?) Example
3n + 4
2n
n2 + 100n
n +

√
n
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Examples

n ∈ O(n2)?
3n2 ∈ O(2n2)?
2n2 ∈ O(n)?
O(n) ⊆ O(n2)?
Θ(n) ⊆ Θ(n2)?
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Quiz

1 ∈ O(15) ?

2n + 1 ∈ Θ(n) ?
√

n ∈ O(n) ?
√

n ∈ Ω(n) ?

n ∈ Ω(
√

n) ?
√

n /∈ Θ(n) ?

O(
√

n) ⊂ O(n) ?

2n /∈ O(exp(n)) ?
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A good strategy?

... Then I simply buy a new machine! If today I can solve a problem of size n,
then with a 10 or 100 times faster machine I can solve ...

Komplexität (speed ×10) (speed ×100)

log2 n

n

n2

2n

28



9. Quiz on Asymptotic Running Time of Pro-
gram Fragments
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Asymptotic Running Times with Θ

void run(int n){
for (int i = 1; i<n; ++i)
op();

}

How often is op() called as a function of n?
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Asymptotic Running Times with Θ

void run(int n){
for (int i = 1; i<n; ++i)

for (int j = 1; j<n; ++j)
op();

}

How often is op() called as a function of n?
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Asymptotic Running Times with Θ

void run(int n){
for (int i = 1; i<n; ++i)

for (int j = i; j<n; ++j)
op();

}

How often is op() called as a function of n?
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Asymptotic Running Times with Θ

void run(int n){
for (int i = 1; i<n; ++i){

op();
for (int j = i; j<n; ++j)

op();
}

}

How often is op() called?
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Asymptotic Running Times with Θ

void run(int n){
for (int i = 1; i<n; ++i){

op();
for (int j = 1; j<i*i; ++j)

op();
}

}

How often is op() called?
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Asymptotic Running Times with Θ

void run(int n){
for(int i = 1; i <= n; ++i)

for(int j = 1; j*j <= n; ++j)
for(int k = n; k >= 2; --k)

op();
}

How often is op() called as a function of n?
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Asymptotic Running Times with Θ

int f(int n){
i=1;
while (i <= n*n*n){

i = i*2;
op();

}
return i;

}
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10. Formulas and their Derivation*
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Sums

n∑
i=0

i = n · (n + 1)
2

Why?
Intuition

1 + ... + 100 = (1 + 100) + (2 + 99) + (3 + 98) + ... + (50 + 51)

More formally?
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Sums

n∑
i=0

(n − i) =
n∑

i=0
i

⇒ 2 ·
n∑

i=0
i =

n∑
i=0

i +
n∑

i=0
(n − i)

=
n∑

i=0
(i + (n − i)) =

n∑
i=0

n = (n + 1) · n
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Sums

n∑
i=0

i2 = n(n + 1)(2n + 1)
6

This you do not need to know by heart. But you should know
that it is a polynomial of third degree.
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Sums

How do you derive something like this? Interesting Trick: On the one hand

n∑
i=0

i3 −
n∑

i=1
(i − 1)3 =

n∑
i=0

i3 −
n−1∑
i=0

i3 = n3,

on the other hand
n∑

i=0
i3 −

n∑
i=1

(i − 1)3 =
n∑

i=1
i3 −

n∑
i=1

(i − 1)3

=
n∑

i=1
i3 − (i − 1)3 =

n∑
i=1

3 · i2 − 3 · i + 1
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Exponents and Logarithms

loga y = x ⇔ ax = y (a > 0, y > 0)

ax · ay = ax+y loga(x · y) = loga x + loga y

ax

ay
= ax−y loga

x

y
= loga x − loga y

ax·y = (ax)y loga xy = y loga x

loga n! =
n∑

i=1
log i

logb x = logb a · loga x alogb x = xlogb a

To see the last line, replace x → aloga x
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Comparisons

n2

2n
−→
n→∞

0
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Comparisons

n10000

2n
−→
n→∞

0
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Comparisons

d > 1, c > 0
nc

dn
−→
n→∞

0

because

nc

dn
= 2log2 nc

2log2 dn = 2c·log2 n−n log2 d
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Comparisons

n

log n
−→
n→∞

∞
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Comparisons

n log n√
n

−→
n→∞

∞
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Comparisons

log2 n2
√

n
−→
n→∞

0

log2 n2 = 2 log2 n
√

n = n1/2 = 2log2 n1/2 =
(√

2
)log2 n

log n2
√

n
= 2 log2 n(√

2
)log2 n

which behaves because of log2 n → ∞ for n → ∞ like 2 n

(√
2)n
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11. Past Exam Questions
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Past Exam Questions

If time allows, this is where we could have a look at old exam questions
and go over them together

 Past Exams
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12. Tips for code expert
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Tips for upcoming code expert exercises

Task "Taskname"
This is where I give you hints and tips for the upcoming code expert
exercises
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13. Outro
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General Questions?

This is where you can ask general questions regarding the course or
bring up things I didn’t cover during the session
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See you next time!

Have a nice week!
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