

#### **Datastructures and Algorithms** Introduction, Logistics, Asymptotics (*O*, Ω, Θ)

Adel Gavranović – ETH Zürich – 2025

### Overview

Learning Objectives Exercise Management Repetition Theory Examples and Quiz on Theory Quiz on Asymptotic Running Time of Program Fragments Formulas and their Derivation\* Past Exam Questions Tips for **code expert** 



n.ethz.ch/~agavranovic



# 1. Intro

### Hello, World!

#### Welcome!

# 2. Follow-up

#### Follow-up from last session

This is where I explain things I missed (or messed up) in last week's session

# 3. Feedback regarding code expert

### General things regarding code expert

- This is where I mention very common mistakes that were made in the exercises on code expert
- Emails are welcome too

#### Any questions regarding code expert on your part?

This is where you'll have a chance to ask thigs regarding code expert that you think might be relevant for the class (hint: it almost always is)

# 4. Learning Objectives

#### Objectives

- $\Box$  Know how the course is built up
- $\Box~$  Understand the definitions of  $\mathcal{O}$  ,  $\Omega$  , and  $\Theta$
- $\Box~$  Understand the uses of  $\mathcal{O}$  ,  $\Omega$  , and  $\Theta$

# 5. Summary

### Getting on the same page

This is where we could talk about what happened during the week if you want to

#### Exercises



- Exercises available at lecture time.
- Preliminary discussion in the following recitation session
- Submit the exercise at the lecture two weeks later. Exception: for the first exercise you only have one week to finish.
- Dicussion of the exercise in the recitation session after the deadline. Feedback within a week after discussion.

# 7. Repetition Theory

#### Warm-up

- What is a problem?
- What is an algorithm?

→ well-defined computing procedure to compute output data from input data.

- What is a program?
  - → Concrete implementation of an algorithm

### Problems, Algorithms and Programs



#### Warm-up



## Efficiency

| Program   | Computing time | Measurable value on an actual machine.                                |
|-----------|----------------|-----------------------------------------------------------------------|
| Algorithm | Cost           | Number of elementary operations                                       |
| Problem   | Complexity     | Minimal (asymptotic) cost over all algorithms that solve the problem. |

 $\rightarrow$  Estimation of cost or computing time depending on the input size, denoted by n.

### Asymptotic behavior

• What are  $\Omega(g(n))$ ,  $\Theta(g(n))$ ,  $\mathcal{O}(g(n))$ ?

→ Sets of functions!

| subset        | $A \subseteq B$     |
|---------------|---------------------|
| proper subset | $A \varsubsetneq B$ |
| intersection  | $A \cap B$          |

### Asymptotic behavior

Given: function  $f : \mathbb{N} \to \mathbb{R}$ . Definition:

> $\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, n_0 \in \mathbb{N} | \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$  $\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, n_0 \in \mathbb{N} | \forall n \ge n_0 : 0 \le c \cdot g(n) \le f(n) \}$  $\Theta(g) = \mathcal{O}(g) \cap \Omega(g)$

#### Intuition:

 $f \in \mathcal{O}(g)$ : f grows asymptotically **not faster** than g. Algorithm with running time f is **not worse** than any other algorithm with g.

 $f \in \Omega(g)$ : f grows asymptotically **not slower** than g. Algorithm with running time f is **not better** than any other algorithm with g.

 $f \in \Theta(g)$ : f grows asymptotically **as fast** as g. Algorithm with running time f is **as good as** any other algorithm with g.

#### Used less often

Given: function  $f : \mathbb{N} \to \mathbb{R}$ . Definition:

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, n_0 \in \mathbb{N} | \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$
$$o(g) = \{ f : \mathbb{N} \to \mathbb{R} | \forall c > 0 \ \exists n_0 \in \mathbb{N} | \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

$$\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, n_0 \in \mathbb{N} | \forall n \ge n_0 : 0 \le c \cdot g(n) \le f(n) \}$$
$$\omega(g) = \{ f : \mathbb{N} \to \mathbb{R} | \forall c > 0 \ \exists n_0 \in \mathbb{N} | \forall n \ge n_0 : 0 \le c \cdot g(n) \le f(n) \}$$

 $f \in o(g)$ : f grows much slower than g  $f \in \omega(g)$ : f grows much faster than g

### Useful information for the exercise

Theorem 1

1. 
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f \in \mathcal{O}(g), \ \mathcal{O}(f) \subsetneq \mathcal{O}(g).$$
  
2.  $\lim_{n\to\infty} \frac{f(n)}{g(n)} = C > 0 \ (C \ constant) \Rightarrow f \in \Theta(g).$   
3.  $\frac{f(n)}{g(n)} \xrightarrow[n\to\infty]{} \infty \Rightarrow g \in \mathcal{O}(f), \ \mathcal{O}(g) \subsetneq \mathcal{O}(f).$ 

Example 2

1. 
$$\lim_{n\to\infty} \frac{n}{n^2} = 0 \Rightarrow n \in \mathcal{O}(n^2), \ \mathcal{O}(n) \subsetneq \mathcal{O}(n^2).$$
  
2.  $\lim_{n\to\infty} \frac{2n}{n} = 2 > 0 \Rightarrow 2n \in \Theta(n).$   
3.  $\frac{n^2}{n} \xrightarrow[n\to\infty]{} \infty \Rightarrow n \in \mathcal{O}(n^2), \ \mathcal{O}(n) \subsetneq \mathcal{O}(n^2).$ 

#### Property

#### $f_1 \in \mathcal{O}(g), f_2 \in \mathcal{O}(g) \Rightarrow f_1 + f_2 \in \mathcal{O}(g)$

# 8. Examples and Quiz on Theory

#### Examples

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

 $\begin{array}{ll} f(n) & f \in \mathcal{O}(?) & \mathsf{Example} \\ 3n+4 & & \\ 2n & & \\ n^2+100n & & \\ n+\sqrt{n} & & \end{array}$ 

#### Examples

- $\blacksquare \ n \in \mathcal{O}(n^2)?$
- $\blacksquare 3n^2 \in \mathcal{O}(2n^2)?$
- $\ \ \, \blacksquare \ \, 2n^2 \in \mathcal{O}(n)?$
- $\ \ \, {\cal O}(n)\subseteq {\cal O}(n^2)?$
- ${\scriptstyle \blacksquare} \ \Theta(n) \subseteq \Theta(n^2)?$

### Quiz

 $1 \in \mathcal{O}(15)$  ?  $2n+1 \in \Theta(n)$  ?  $\sqrt{n} \in \mathcal{O}(n)$  ?  $\sqrt{n} \in \Omega(n)$  ?  $n \in \Omega(\sqrt{n})$  ?  $\sqrt{n} \notin \Theta(n)$  ?  $\mathcal{O}(\sqrt{n}) \subset \mathcal{O}(n)$  ?  $2^n \notin \mathcal{O}(\exp(n))$  ?

### A good strategy?

... Then I simply buy a new machine! If today I can solve a problem of size n, then with a 10 or 100 times faster machine I can solve ...



# 9. Quiz on Asymptotic Running Time of Program Fragments

```
void run(int n){
  for (int i = 1; i<n; ++i)
  op();
}</pre>
```

```
void run(int n){
  for (int i = 1; i<n; ++i)
    for (int j = 1; j<n; ++j)
        op();
}</pre>
```

```
void run(int n){
  for (int i = 1; i<n; ++i)
    for (int j = i; j<n; ++j)
        op();
}</pre>
```

```
void run(int n){
  for (int i = 1; i<n; ++i){
    op();
    for (int j = i; j<n; ++j)
        op();
    }
}</pre>
```

How often is op() called?

```
void run(int n){
  for (int i = 1; i<n; ++i){
    op();
    for (int j = 1; j<i*i; ++j)
        op();
    }
}</pre>
```

How often is op() called?

```
void run(int n){
  for(int i = 1; i <= n; ++i)
    for(int j = 1; j*j <= n; ++j)
    for(int k = n; k >= 2; --k)
        op();
}
```

```
int f(int n){
    i=1;
    while (i <= n*n*n){
        i = i*2;
        op();
    }
    return i;
}</pre>
```

# 10. Formulas and their Derivation\*

$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2}$$

Why? Intuition

$$1 + \dots + 100 = (1 + 100) + (2 + 99) + (3 + 98) + \dots + (50 + 51)$$

More formally?

$$\sum_{i=0}^{n} (n-i) = \sum_{i=0}^{n} i$$

$$\Rightarrow 2 \cdot \sum_{i=0}^{n} i = \sum_{i=0}^{n} i + \sum_{i=0}^{n} (n-i)$$
$$= \sum_{i=0}^{n} (i + (n-i)) = \sum_{i=0}^{n} n = (n+1) \cdot n$$

$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

This you do not need to know by heart. But you should know that it is a polynomial of third degree.

How do you derive something like this? Interesting Trick: On the one hand

$$\sum_{i=0}^{n} i^{3} - \sum_{i=1}^{n} (i-1)^{3} = \sum_{i=0}^{n} i^{3} - \sum_{i=0}^{n-1} i^{3} = n^{3},$$

on the other hand

$$\sum_{i=0}^{n} i^3 - \sum_{i=1}^{n} (i-1)^3 = \sum_{i=1}^{n} i^3 - \sum_{i=1}^{n} (i-1)^3$$
$$= \sum_{i=1}^{n} i^3 - (i-1)^3 = \sum_{i=1}^{n} 3 \cdot i^2 - 3 \cdot i + 1$$

#### Exponents and Logarithms

$$\log_a y = x \Leftrightarrow a^x = y \quad (a > 0, y > 0)$$

$$\begin{aligned} a^x \cdot a^y &= a^{x+y} & \log_a(x \cdot y) = \log_a x + \log_a y \\ \frac{a^x}{a^y} &= a^{x-y} & \log_a \frac{x}{y} = \log_a x - \log_a y \\ a^{x \cdot y} &= (a^x)^y & \log_a x^y = y \log_a x \\ & \log_a n! = \sum_{i=1}^n \log i \\ \log_b x &= \log_b a \cdot \log_a x & a^{\log_b x} = x^{\log_b a} \end{aligned}$$

To see the last line, replace  $x \to a^{\log_a x}$ 

$$\frac{n^2}{2^n} \underset{n \to \infty}{\longrightarrow} 0$$

$$\frac{n^{10000}}{2^n} \xrightarrow[n \to \infty]{} 0$$

d > 1, c > 0

$$\frac{n^c}{d^n} \underset{n \to \infty}{\longrightarrow} 0$$

because

$$\frac{n^c}{d^n} = \frac{2^{\log_2 n^c}}{2^{\log_2 d^n}} = 2^{c \cdot \log_2 n - n \log_2 d}$$

$$\frac{n}{\log n} \xrightarrow[n \to \infty]{} \infty$$

$$\frac{n\log n}{\sqrt{n}} \underset{n \to \infty}{\longrightarrow} \infty$$

$$\frac{\log_2 n^2}{\sqrt{n}} \underset{n \to \infty}{\longrightarrow} 0$$

$$\log_2 n^2 = 2 \log_2 n$$
$$\sqrt{n} = n^{1/2} = 2^{\log_2 n^{1/2}} = \left(\sqrt{2}\right)^{\log_2 n}$$
$$\frac{\log n^2}{\sqrt{n}} = 2\frac{\log_2 n}{\left(\sqrt{2}\right)^{\log_2 n}}$$

which behaves because of  $\log_2 n \to \infty$  for  $n \to \infty$  like  $2\frac{n}{\left(\sqrt{2}\right)^n}$ 

## 11. Past Exam Questions

#### Past Exam Questions

If time allows, this is where we could have a look at old exam questions and go over them together





# 12. Tips for code expert

### Tips for upcoming **code** expert exercises

#### Task "Taskname"

This is where I give you hints and tips for the upcoming code expert exercises

# 13. Outro

#### **General Questions?**

This is where you can ask general questions regarding the course or bring up things I didn't cover during the session

#### See you next time!

#### Have a nice week!