
Datastructures and Algorithms
Containers, auto, Templates, Induction

Adel Gavranovi! — ETH Zürich — 2025

Overview

Learning Objectives
C++ Container Library
Templates Recap
Auto vs Templates
Repetition theory: Induction
Subarray Sum Problem
Code Example
Programming Exercise
Past Exam Questions
Tips for code expert

n.ethz.ch/~agavranovic

! Material

! Webpage

! Mail

→ 1

1. Follow-up

→ 2

Follow-up from last session

Random Access and Pointer Machine Models
Nothing that’s very relevant for the exam, so no need to worry about it
too much. . .

→ 3

Follow-up from last session
Regarding the "one week Deadline for the first"

I was wrong! because I didn’t verify the (provided) information. . .

The deadline for the code expert Exercise 1 (Asymptotic Running Times,
Prefix Sums) is

Thu, 27.02.2025 at 23:59
which can by seen on the code expert page

→ 4

Follow-up from last session
Regarding the "one week Deadline for the first"

I was wrong! because I didn’t verify the (provided) information. . .
The deadline for the code expert Exercise 1 (Asymptotic Running Times,
Prefix Sums) is

Thu, 27.02.2025 at 23:59
which can by seen on the code expert page

→ 4

Follow-up from last session
Regarding the "one week Deadline for the first"

I was wrong! because I didn’t verify the (provided) information. . .
The deadline for the code expert Exercise 1 (Asymptotic Running Times,
Prefix Sums) is

Thu, 27.02.2025 at 23:59
which can by seen on the code expert page

→ 4

Follow-up from last session
Regarding the "one week Deadline for the first"

I was wrong! because I didn’t verify the (provided) information. . .
The deadline for the code expert Exercise 1 (Asymptotic Running Times,
Prefix Sums) is

Thu, 27.02.2025 at 23:59
which can by seen on the code expert page

→ 4

2. Feedback regarding code expert

→ 5

General things regarding code expert

Please learn some LATEX and markdown for the submissions
Amazing tool for finding the right commands: ! Detexify

Also: read the descriptions carefully!

→ 6

General things regarding code expert

Please learn some LATEX and markdown for the submissions
Amazing tool for finding the right commands: ! Detexify

Also: read the descriptions carefully!

→ 6

Any questions regarding code expert on your part?

→ 7

3. Learning Objectives

→ 8

Learning Objectives

↭ Understand what Container are and what benefits they bring
↭ Understand what Templates are and what benefits they bring
↭ Understand how to do Induction Proofs in this course
↭ Be prepared to solve the next code expert exercises

→ 9

4. Summary

→ 10

Getting on the same page

What was covered this week and what would you like to revist?

→ 11

Getting on the same page

What was covered this week and what would you like to revist?

→ 11

5. C++ Container Library

→ 12

C++ Containers

duplicates?

ordered?

multimap

ye
s

unordered_multimap

no

yes

ordered?

map
ye
s

unordered_map

no

no

key-valu
e

pairs

duplicates?

ordered?

multiset

so
rte
d

vector, array, deque,
list, forward_list

insertion
order unordered_multiset

no

yes

ordered?

set

ye
s

unordered_set

no

no

Values

→ 13

Sequence-Container

vector array deque list forward_list
contiguous
dynamic
memory

contiguous
static memory

Non-contig.
dynamic
memory

Non-contig.
dynamic
memory

Non-contig.
dynamic
memory

random
access

random
access

random
access

fast push/pop
back

fast push/pop
front/back

fast push/pop
front/back

fast push/pop
front

bidirectional
iteration

bidirectional
iteration

bidirectional
iteration

bidirectional
iteration

forward
iteration

dynamic: size can change during runtime, static: size fixed at compile-time,
random acccess: direct, immediate access to any element by its index (e.g.
vec[42]), bidirectional: backward and forwards iterable

→ 14

Sets and Multisets

std::set<E> contains unique elements
std::multiset<E> allows duplicate elements

Iteration yields all elements in ascending order (in non-deterministic order
if unordered_multiset)
std::multiset<E>::count(elem) returns the number of occurences of a
given element

Example of std::multiset

Content: Xanten Xenon Xenon Xenon Xerografie Xerophil Xylose

count("Xenon") = 3

count("Xylose") = 1

→ 15

Sets and Multisets

std::set<E> contains unique elements
std::multiset<E> allows duplicate elements

Iteration yields all elements in ascending order (in non-deterministic order
if unordered_multiset)
std::multiset<E>::count(elem) returns the number of occurences of a
given element

Example of std::multiset

Content: Xanten Xenon Xenon Xenon Xerografie Xerophil Xylose

count("Xenon") = 3

count("Xylose") = 1

→ 15

Maps and Multimaps
std::map<K,V> contains pairs (key, value), where a key maps to at most
one value
std::multimap<K,V> allows duplicate pairs

Iteration yields all pairs in ascending key order (in non-deterministic order,
if unordered_multimap)
std::multimap<K,V>::count(key) returns the number of occurrences of a
given key
std::multimap<K,V>::equal_range(key) returns all values (in non-det.
order) for a given key

Example of std::multimap<K,V>

Content: {2, er} {2, du} {2, es} {3, Axt} {3, sie} {4, Igel}
count(2) = 3
Values for key 2: er du es

→ 16

Maps and Multimaps
std::map<K,V> contains pairs (key, value), where a key maps to at most
one value
std::multimap<K,V> allows duplicate pairs

Iteration yields all pairs in ascending key order (in non-deterministic order,
if unordered_multimap)
std::multimap<K,V>::count(key) returns the number of occurrences of a
given key
std::multimap<K,V>::equal_range(key) returns all values (in non-det.
order) for a given key

Example of std::multimap<K,V>

Content: {2, er} {2, du} {2, es} {3, Axt} {3, sie} {4, Igel}
count(2) = 3
Values for key 2: er du es→ 16

6. Templates Recap

→ 17

Motivational Example From the
Lecture

Example goal: generic class and functionality for matrices (and vectors),
without duplicating code!

class Matrix { ... };

auto m1 = Matrix<int>(5,3);

auto m2 = Vector<std::string> {"Zurich", "Locarno"};

auto m3 = Matrix<Complex>(...);

m1(1,2) = 10;

auto sum = m1 + m2 + m3;

std::cout << m3.max();

→ 18

Parametric Polymorphism From the
Lecture

Types as template parameters

1. In the concrete implementation of a class replace the type that
should become generic (in our example: dint) by a representative
element, e.g. T.

2. Put in front of the class the construct template<typename T>

Replace T by the representative name).

The construct template<typename T> can be understood as “for all types
T”.

→ 19

Integer Matrix
class Matrix {

unsigned sizeR, sizeC;
std::vector<int> data;

public:
Matrix(unsigned R, unsigned C): sizeR(R), sizeC(C), data(R*C) {}

int& operator() (unsigned r, unsigned c){
assert (r < sizeR && c < sizeC);
return data[r*sizeC + c];

}

const int& operator() (unsigned r, unsigned c) const { .. }
unsigned rows() const { return sizeR; }

...
};→ 20

Generic Matrix
template <typename T>
class Matrix {

unsigned sizeR, sizeC;
std::vector<T> data;

public:
Matrix(unsigned R, unsigned C): sizeR(R), sizeC(C), data(R*C) {}

T& operator() (unsigned r, unsigned c){
assert (r < sizeR && c < sizeC);
return data[r*sizeC + c];

}
const T& operator() (unsigned r, unsigned c) const { .. }
unsigned rows() const { return sizeR; }
...

};→ 21

Parametric Polymorphism II From the
Lecture

Algorithms and functions can also be parameterised with a type:

Function Templates

1. To make a concrete implementation generic, replace the specific
type (e.g. int) with a name, e.g. T,

2. Put in front of the function the construct template<typename T>

(Replace T by the chosen name)

→ 22

Examples
For free functions
template <typename T>
void swap(T& x, T& y) {

T temp = x;
x = y;
y = temp;

}

template <typename Iter>
void is_sorted(Iter begin, Iter end){

...
}

For operators
template <typename T>
ostream& operator<<(ostream& out, const Node<T> root) {

...
}

→ 23

Semantics (Code-Generation)
For each template instance, the compiler creates a corresponding
instantiated class (or function) ↑ static code generation

Matrix<int> m1 = ...;

Matrix<std::string> m2 = ...;

Matrix<Student> m3 = ...;

class Matrix_int {

...

std::vector<int> data

...

};

class Matrix_string {

...

std::vector<std::string>

data

...

};

class Matrix_student {

...

std::vector<Student> data

...

};

m1 m2 m3

→ 24

Semantics (Code-Generation)

For each template instance, the compiler creates a corresponding
instantiated class (or function) ↑ static code generation

Question: what does this imply for seperate compilation?

Should templates be spilt up into .h (declarations) and .cpp
(definitions) files?
Is it possible to ship the compiled implementation (binary file
compiled from .cpp) alongside the header file?

→ 25

No Separate Compilation

Code is usually separated into .h (header) and .cpp (source) files for
modularity and faster re-compilation. The header contains declarations,
while the source file holds definitions/implementations, enabling better
code organization and independent compilation.
Templates can not be split into .h and .cpp files because the entire
definition (not just the declaration) must be visible to the compiler.
It is not possible to ship the compiled binary from the .cpp file alongside
the header because templates are instantiated at compile time for the
specific types used. The compiler doesn’t know the types in advance and
cannot pre-compile all in a binary file.

→ 26

Integer Matrix

class Int_Matrix {
...
int& operator() (unsigned r, unsigned c);

}; matrix.h

int& Int_Matrix::operator() (unsigned r, unsigned c){
return data[r*sizeC + c];

} matrix.cpp

#include <matrix.h>
...
Int_Matrix m(10,10);
m(3,3) = 5; // ok main.cpp

→ 27

Generic Matrix?
template <typename T>
class Matrix {

...
T& operator() (unsigned r, unsigned c);

}; matrix.h

template <typename T>
T& Matrix<T>::operator() (unsigned r, unsigned c){

return data[r*sizeC + c];
} matrix.cpp

#include <matrix.h>
...
Matrix<int> m(10,10);
m(3,3) = 5; // error: undefined reference main.cpp→ 28

Generalizing Code using Templates

class Vector {
public:

Vector() {...}
float& operator [](int i) { return data[i]; }

private:
float data[3];

};

float scalar_product(Vector a, Vector b) {
float result = 0;
for (int i=0; i<3; ++i)

result += a[i] * b[i];
return result;

}

→ 29

Type testing
Templates: syntactic checks
Instances: checks as usual

template <typename T>

T abs(T v) {

return 0 <= v ? v : -v;

}

// main

abs(8); // OK

template <typename T>

T abs(T v) {

return 0 <= v ? v : -v; // Error

}

// main

abs("hi"); // Error

template <typename T>

void swap(T& x, T& y) {

...

}

// main

double a = 1.0;

double b = 7;

swap(a, b); // OK

template <typename T>

void swap(T& x, T& y) {

...

}

// main

double a = 1.0;

string b = "seven";

swap(a, b); // Error

→ 30

Other Languages
All languages try to foster code reuse but chose di"erent solutions.
C++, Rust:

static code generation
no runtime overhead
di#cult to integrate into OOP

C#, Scala (, Java)
type parameters are turned into runtime values
well-suited for OOP
minor runtime overhead

Python, JavaScript:
dynamic typing (duck typing)
no syntactic overhead
potentially significant runtime overhead→ 31

7. Auto vs Templates

→ 32

auto

Placeholder type specifier
Must be uniquely determined by direct context: initialiser code, or returns
User could write type themself, but leave it to the compiler

std::vector<int> vec = ...;
auto it = vec.cbegin();
// placeholder for td::vector<int>::const_iterator
Failing examples:
auto x; // x has no initializer
x = 0.0;
auto first_or_else(std::vector<int> data, unsigned int or_else) {

if (data.size() == 0) return or_else;
else return data[0];

}
→ 33

Templates
Parameters are unknown until instantiated
template <typename N>
char sign(N v) {

if (0 <= v) return '+';
else return '-';

}

template <typename T1, typename T2>
struct Pair {

T1 fst;
T2 snd;

};
Instantiation may happen anywhere
Pair<int, double> p1 = Pair{1, 0.1};
auto p2 = Pair<std::string, bool>{"Brazil", true};→ 34

Combining templates and auto
auto inside template must be determined after instantiation
template <typename C>

void print(C container) {

for (auto& e : container)

std::cout << e << ' ';

}

std::vector<int> numbers = {1, 2, 3};

print(numbers); // now auto can be determined

std::vector<std::string> airports = {"LAX", "LDN", "ZHR"};

print(airports); // now auto can be determined

→ 35

Combining templates and auto

auto inside template must be determined after instantiation
template <typename C>

void print(C container) {

for (auto& e : container)

std::cout << e << ' ';

}

Question: Is it possible to not use auto here?

Answer: Yes, for example by replacing auto with an additional template
parameter E

→ 36

Combining templates and auto

auto inside template must be determined after instantiation
template <typename C>

void print(C container) {

for (auto& e : container)

std::cout << e << ' ';

}

Question: Is it possible to not use auto here?
Answer: Yes, for example by replacing auto with an additional template
parameter E

→ 36

From auto to templates
Before C++20 auto function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?
Answer: Cannot determine type from context
Since C++20 auto function parameters are allowed
void print(auto x) {...} // ok

Clearly, it is still not possible to determine what auto stands for.
Question: What could be the meaning of auto in this case?
Answer: It is a shorthand for a template parameter!
template <typename T>

void Print(T x){ ... }

→ 37

From auto to templates
Before C++20 auto function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?

Answer: Cannot determine type from context
Since C++20 auto function parameters are allowed
void print(auto x) {...} // ok

Clearly, it is still not possible to determine what auto stands for.
Question: What could be the meaning of auto in this case?
Answer: It is a shorthand for a template parameter!
template <typename T>

void Print(T x){ ... }

→ 37

From auto to templates
Before C++20 auto function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?
Answer: Cannot determine type from context

Since C++20 auto function parameters are allowed
void print(auto x) {...} // ok

Clearly, it is still not possible to determine what auto stands for.
Question: What could be the meaning of auto in this case?
Answer: It is a shorthand for a template parameter!
template <typename T>

void Print(T x){ ... }

→ 37

From auto to templates
Before C++20 auto function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?
Answer: Cannot determine type from context
Since C++20 auto function parameters are allowed
void print(auto x) {...} // ok

Clearly, it is still not possible to determine what auto stands for.

Question: What could be the meaning of auto in this case?
Answer: It is a shorthand for a template parameter!
template <typename T>

void Print(T x){ ... }

→ 37

From auto to templates
Before C++20 auto function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?
Answer: Cannot determine type from context
Since C++20 auto function parameters are allowed
void print(auto x) {...} // ok

Clearly, it is still not possible to determine what auto stands for.
Question: What could be the meaning of auto in this case?

Answer: It is a shorthand for a template parameter!
template <typename T>

void Print(T x){ ... }

→ 37

From auto to templates
Before C++20 auto function parameters are forbidden
void print(auto x) {...} // Compiler error

Question: Why do you think that is?
Answer: Cannot determine type from context
Since C++20 auto function parameters are allowed
void print(auto x) {...} // ok

Clearly, it is still not possible to determine what auto stands for.
Question: What could be the meaning of auto in this case?
Answer: It is a shorthand for a template parameter!
template <typename T>

void Print(T x){ ... }

→ 37

8. Repetition theory: Induction

→ 38

Induction: what is required?

Prove statements, for example ∑n
i=1 i = n(n+1)

2 .

Base clause:

The given (in)equality holds for one or more base cases.
e.g.

∑1
i=1 i = 1 = 1(1+1)

2 .

Induction hypothesis: we assume that the statement holds for some n

Induction step (n ↑ n + 1):
From the validity of the statement for n (induction hypothesis) it follows the
one for n + 1.
e.g.:

∑n+1
i=1 i = n + 1 + ∑n

i=1 i = n + 1 + n(n+1)
2 = (n+2)(n+1)

2 .

→ 39

Induction: what is required?

Prove statements, for example ∑n
i=1 i = n(n+1)

2 .

Base clause:

The given (in)equality holds for one or more base cases.
e.g.

∑1
i=1 i = 1 = 1(1+1)

2 .

Induction hypothesis: we assume that the statement holds for some n

Induction step (n ↑ n + 1):
From the validity of the statement for n (induction hypothesis) it follows the
one for n + 1.
e.g.:

∑n+1
i=1 i = n + 1 + ∑n

i=1 i = n + 1 + n(n+1)
2 = (n+2)(n+1)

2 .

→ 39

Induction: what is required?

Prove statements, for example ∑n
i=1 i = n(n+1)

2 .

Base clause:

The given (in)equality holds for one or more base cases.
e.g.

∑1
i=1 i = 1 = 1(1+1)

2 .

Induction hypothesis: we assume that the statement holds for some n

Induction step (n ↑ n + 1):
From the validity of the statement for n (induction hypothesis) it follows the
one for n + 1.
e.g.:

∑n+1
i=1 i = n + 1 + ∑n

i=1 i = n + 1 + n(n+1)
2 = (n+2)(n+1)

2 .

→ 39

Induction: what is required?

Prove statements, for example ∑n
i=1 i = n(n+1)

2 .

Base clause:

The given (in)equality holds for one or more base cases.
e.g.

∑1
i=1 i = 1 = 1(1+1)

2 .

Induction hypothesis: we assume that the statement holds for some n

Induction step (n ↑ n + 1):
From the validity of the statement for n (induction hypothesis) it follows the
one for n + 1.
e.g.:

∑n+1
i=1 i = n + 1 + ∑n

i=1 i = n + 1 + n(n+1)
2 = (n+2)(n+1)

2 .

→ 39

9. Subarray Sum Problem
Naïve Solution, prefix sums, binary search, Sliding Window

→ 40

Street section of a given length

Given: distances between all crossroads on a street

66 m 50 m 64 m 36 m 86 m

Wanted: street section of length 150 meters between crossroads

→ 41

Street section of a given length

Given: distances between all crossroads on a street

66 m 50 m 64 m 36 m 86 m

Wanted: street section of length 150 meters between crossroads

→ 41

Street section of a given length

Given: distances between all crossroads on a street

66 m 50 m 64 m 36 m 86 m

Wanted: street section of length 150 meters between crossroads

→ 41

Street section of a given length

Given: distances between all crossroads on a street

66 m 50 m 64 m 36 m 86 m

Wanted: street section of length 150 meters between crossroads

→ 41

Street section of a given length

Given: distances between all crossroads on a street

66 m 50 m 64 m 36 m 86 m

Wanted: street section of length 150 meters between crossroads

→ 41

Subarray Sum Problem

Given: an array A = (A[1], . . . , A[n]) of non-negative integers

Wanted: a subarray with sum k:
pair (l, r) with 1 ↓ l ↓ r ↓ n such that ∑r→1

i=l A[i] = k

Example: n = 9, k = 7 Solution: l = 2, r = 5.

1
1

2
2

2
3

3
4

1
5

4
6

2
7

2
8

3
9

rl

2 2 3

→ 42

Subarray Sum Problem

Given: an array A = (A[1], . . . , A[n]) of non-negative integers
Wanted: a subarray with sum k:
pair (l, r) with 1 ↓ l ↓ r ↓ n such that ∑r→1

i=l A[i] = k

Example: n = 9, k = 7 Solution: l = 2, r = 5.

1
1

2
2

2
3

3
4

1
5

4
6

2
7

2
8

3
9

rl

2 2 3

→ 42

Subarray Sum Problem

Given: an array A = (A[1], . . . , A[n]) of non-negative integers
Wanted: a subarray with sum k:
pair (l, r) with 1 ↓ l ↓ r ↓ n such that ∑r→1

i=l A[i] = k

Example: n = 9, k = 7

Solution: l = 2, r = 5.

1
1

2
2

2
3

3
4

1
5

4
6

2
7

2
8

3
9

rl

2 2 3

→ 42

Subarray Sum Problem

Given: an array A = (A[1], . . . , A[n]) of non-negative integers
Wanted: a subarray with sum k:
pair (l, r) with 1 ↓ l ↓ r ↓ n such that ∑r→1

i=l A[i] = k

Example: n = 9, k = 7 Solution: l = 2, r = 5.

1
1

2
2

2
3

3
4

1
5

4
6

2
7

2
8

3
9

rl

2 2 3

→ 42

Strategies?

Given: an array A = (A[1], . . . , A[n]) of non-negative integers
Wanted: a subarray with sum k:
pair (l, r) with 1 ↓ l ↓ r ↓ n such that ∑r→1

i=l A[i] = k

Strategies

!(n3) Three loops
!(n2) ?
!(n log n) ?
!(n) ?

→ 43

Strategies?

Given: an array A = (A[1], . . . , A[n]) of non-negative integers
Wanted: a subarray with sum k:
pair (l, r) with 1 ↓ l ↓ r ↓ n such that ∑r→1

i=l A[i] = k

Strategies

!(n3) Three loops
!(n2) Prefix Sums
!(n log n) ?
!(n) ?

→ 43

Strategies?

Given: an array A = (A[1], . . . , A[n]) of non-negative integers
Wanted: a subarray with sum k:
pair (l, r) with 1 ↓ l ↓ r ↓ n such that ∑r→1

i=l A[i] = k

Strategies

!(n3) Three loops
!(n2) Prefix Sums
!(n log n) Binary Search
!(n) ?

→ 43

Strategies?

Given: an array A = (A[1], . . . , A[n]) of non-negative integers
Wanted: a subarray with sum k:
pair (l, r) with 1 ↓ l ↓ r ↓ n such that ∑r→1

i=l A[i] = k

Strategies

!(n3) Three loops
!(n2) Prefix Sums
!(n log n) Binary Search
!(n) Sliding Window

→ 43

Subarray Sum Problem: Sliding Window
Sliding Window Idea

start with left and right pointer at 1
repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum =l, rl r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window
Sliding Window Idea
start with left and right pointer at 1

repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum =l, rl r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window
Sliding Window Idea
start with left and right pointer at 1
repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum =l, rl r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window
Sliding Window Idea
start with left and right pointer at 1
repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum =l, rl r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window
Sliding Window Idea
start with left and right pointer at 1
repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum =l, rl r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window
Sliding Window Idea
start with left and right pointer at 1
repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum = 0l, r

l r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window
Sliding Window Idea
start with left and right pointer at 1
repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum = 2

l, r

l r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window
Sliding Window Idea
start with left and right pointer at 1
repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum = 5

l, rl r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window
Sliding Window Idea
start with left and right pointer at 1
repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum = 6

l, rl r

2

l

2 3

r

1

r

l r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window
Sliding Window Idea
start with left and right pointer at 1
repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum = 8

l, rl r

2

l

2 3

r

1

r

l r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window
Sliding Window Idea
start with left and right pointer at 1
repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum = 6

l, rl r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window
Sliding Window Idea
start with left and right pointer at 1
repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum = 8

l, rl r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window
Sliding Window Idea
start with left and right pointer at 1
repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum = 5

l, rl r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window
Sliding Window Idea
start with left and right pointer at 1
repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum = 8

l, rl r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window
Sliding Window Idea
start with left and right pointer at 1
repeat until the end of the sequence:

window too small (sum < k) ↔ increment right pointer
window too large (sum > k) ↔ increment left pointer
window as desired (sum = k) ↔ done!

Example: k = 7

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

sum = 7

l, rl r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

→ 44

Subarray Sum Problem: Sliding Window Analysis

in each step: either l or r is increased
↔ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
↔ sum too large ↔ l is increased until it reaches the start of the window
if l reaches the start before r reaches the end
↔ sum too small ↔ r is increased until it reaches the end of the window

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

2 2 3

l l rl r rl, rl

→ 45

Subarray Sum Problem: Sliding Window Analysis

in each step: either l or r is increased
↔ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
↔ sum too large ↔ l is increased until it reaches the start of the window
if l reaches the start before r reaches the end
↔ sum too small ↔ r is increased until it reaches the end of the window

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

2 2 3

l l rl r rl, rl

→ 45

Subarray Sum Problem: Sliding Window Analysis
in each step: either l or r is increased
↔ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
↔ sum too large ↔ l is increased until it reaches the start of the window
if l reaches the start before r reaches the end
↔ sum too small ↔ r is increased until it reaches the end of the window

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

2 2 3

l l rl r rl, rl

→ 45

Subarray Sum Problem: Sliding Window Analysis
in each step: either l or r is increased
↔ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
↔ sum too large ↔ l is increased until it reaches the start of the window
if l reaches the start before r reaches the end
↔ sum too small ↔ r is increased until it reaches the end of the window

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

2 2 3

l l rl r rl, rl

→ 45

Subarray Sum Problem: Sliding Window Analysis
in each step: either l or r is increased
↔ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start

↔ sum too large ↔ l is increased until it reaches the start of the window
if l reaches the start before r reaches the end
↔ sum too small ↔ r is increased until it reaches the end of the window

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

2 2 3

l l

rl

r rl, rl

→ 45

Subarray Sum Problem: Sliding Window Analysis
in each step: either l or r is increased
↔ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
↔ sum too large

↔ l is increased until it reaches the start of the window
if l reaches the start before r reaches the end
↔ sum too small ↔ r is increased until it reaches the end of the window

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

2 2 3

l l

rl

r rl, rl

→ 45

Subarray Sum Problem: Sliding Window Analysis
in each step: either l or r is increased
↔ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
↔ sum too large ↔ l is increased until it reaches the start of the window

if l reaches the start before r reaches the end
↔ sum too small ↔ r is increased until it reaches the end of the window

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

2 2 3

l l

rl

r rl, rl

→ 45

Subarray Sum Problem: Sliding Window Analysis
in each step: either l or r is increased
↔ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
↔ sum too large ↔ l is increased until it reaches the start of the window

if l reaches the start before r reaches the end
↔ sum too small ↔ r is increased until it reaches the end of the window

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

2 2 3

l

l

r

l r rl, rl

→ 45

Subarray Sum Problem: Sliding Window Analysis
in each step: either l or r is increased
↔ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
↔ sum too large ↔ l is increased until it reaches the start of the window

if l reaches the start before r reaches the end
↔ sum too small ↔ r is increased until it reaches the end of the window

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

2 2 3

l

l r

l r rl, rl

→ 45

Subarray Sum Problem: Sliding Window Analysis
in each step: either l or r is increased
↔ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
↔ sum too large ↔ l is increased until it reaches the start of the window
if l reaches the start before r reaches the end

↔ sum too small ↔ r is increased until it reaches the end of the window

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

2 2 3

l l rl r r

l, r

l

→ 45

Subarray Sum Problem: Sliding Window Analysis
in each step: either l or r is increased
↔ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
↔ sum too large ↔ l is increased until it reaches the start of the window
if l reaches the start before r reaches the end
↔ sum too small

↔ r is increased until it reaches the end of the window

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

2 2 3

l l rl r r

l, r

l

→ 45

Subarray Sum Problem: Sliding Window Analysis
in each step: either l or r is increased
↔ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
↔ sum too large ↔ l is increased until it reaches the start of the window
if l reaches the start before r reaches the end
↔ sum too small ↔ r is increased until it reaches the end of the window

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

2 2 3

l l rl r r

l, r

l

→ 45

Subarray Sum Problem: Sliding Window Analysis
in each step: either l or r is increased
↔ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
↔ sum too large ↔ l is increased until it reaches the start of the window
if l reaches the start before r reaches the end
↔ sum too small ↔ r is increased until it reaches the end of the window

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

2 2 3

l l rl

r

rl, r

l
→ 45

Subarray Sum Problem: Sliding Window Analysis
in each step: either l or r is increased
↔ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
↔ sum too large ↔ l is increased until it reaches the start of the window
if l reaches the start before r reaches the end
↔ sum too small ↔ r is increased until it reaches the end of the window

2
1

3
2

1
3

2
4

2
5

3
6

4
7

6
8

7
9

6
10

2 2 3

l l rl r

r

l, r

l
→ 45

Analysis

We consider the lexicographically smallest (left-most) window with sum k,
called target window
In each step of the algorithm either l or r is increased. The algorithm
terminates after a maximum of 2n steps.
Assume r reaches the end of the target window before l reaches the start
of the target window, then l keeps increasing until it reaches the start of
the window.
Assume l reaches the start of the target window before r reaches the end
of the target window, then r keeps increasing until it reaches the end of
the window.

Exercise: window with sum closest to k

→ 46

10. Code Example

→ 47

10. Code Example

Subarray Sum Problem ↑↓ CodeExpert

→ 48

11. Programming Exercise
Preparing remarks for the homework (Prefix Sum in 2D)

→ 49

Sum in Subarray (naive algorithm)

Input: A sequence of n numbers (a1, . . . , an) and a sub-interval I = [l, r]
Output:

∑r
i=l ai.

S → 0
for i ↔ {l, . . . , r} do

S → S + ai

return S

Idea of the exercise
Use the prefix sum to compute the sum of arbitrary sub-intervals with
constant running time
Generalize to two dimensions.

→ 50

Sum in Subarray (naive algorithm)

Input: A sequence of n numbers (a1, . . . , an) and a sub-interval I = [l, r]
Output:

∑r
i=l ai.

S → 0
for i ↔ {l, . . . , r} do

S → S + ai

return S

Idea of the exercise
Use the prefix sum to compute the sum of arbitrary sub-intervals with
constant running time
Generalize to two dimensions.

→ 50

12. Past Exam Questions

→ 51

Altklausur 2020: Aufgabe 2a)

→ 52

Altklausur 2020: Aufgabe 2a) — Solution

→ 53

Altklausur 2020: Aufgabe 2b), 2c)

→ 54

Altklausur 2020: Aufgabe 2b), 2c) — Solution

→ 55

13. Tips for code expert

→ 56

Tips for code expert Exercise 2
Task "Prefix Sum in 2D"

Study the Prefix Sum in 1D1 well and go from there
Make sketches!

Task "Sliding Window"
Sketches!

Task "Proofs by Induction"
The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

Task "Karatsuba Ofman"
Just translate the math into code

1There’s an implementation in the code examples on code expert
→ 57

Tips for code expert Exercise 2
Task "Prefix Sum in 2D"

Study the Prefix Sum in 1D1 well and go from there
Make sketches!

Task "Sliding Window"
Sketches!

Task "Proofs by Induction"
The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

Task "Karatsuba Ofman"
Just translate the math into code

1There’s an implementation in the code examples on code expert
→ 57

Tips for code expert Exercise 2
Task "Prefix Sum in 2D"

Study the Prefix Sum in 1D1 well and go from there
Make sketches!

Task "Sliding Window"

Sketches!
Task "Proofs by Induction"

The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

Task "Karatsuba Ofman"
Just translate the math into code

1There’s an implementation in the code examples on code expert
→ 57

Tips for code expert Exercise 2
Task "Prefix Sum in 2D"

Study the Prefix Sum in 1D1 well and go from there
Make sketches!

Task "Sliding Window"
Sketches!

Task "Proofs by Induction"
The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

Task "Karatsuba Ofman"
Just translate the math into code

1There’s an implementation in the code examples on code expert
→ 57

Tips for code expert Exercise 2
Task "Prefix Sum in 2D"

Study the Prefix Sum in 1D1 well and go from there
Make sketches!

Task "Sliding Window"
Sketches!

Task "Proofs by Induction"

The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

Task "Karatsuba Ofman"
Just translate the math into code

1There’s an implementation in the code examples on code expert
→ 57

Tips for code expert Exercise 2
Task "Prefix Sum in 2D"

Study the Prefix Sum in 1D1 well and go from there
Make sketches!

Task "Sliding Window"
Sketches!

Task "Proofs by Induction"
The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

Task "Karatsuba Ofman"
Just translate the math into code

1There’s an implementation in the code examples on code expert
→ 57

Tips for code expert Exercise 2
Task "Prefix Sum in 2D"

Study the Prefix Sum in 1D1 well and go from there
Make sketches!

Task "Sliding Window"
Sketches!

Task "Proofs by Induction"
The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

Task "Karatsuba Ofman"

Just translate the math into code

1There’s an implementation in the code examples on code expert
→ 57

Tips for code expert Exercise 2
Task "Prefix Sum in 2D"

Study the Prefix Sum in 1D1 well and go from there
Make sketches!

Task "Sliding Window"
Sketches!

Task "Proofs by Induction"
The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

Task "Karatsuba Ofman"
Just translate the math into code

1There’s an implementation in the code examples on code expert
→ 57

14. Outro

→ 58

General Questions?

→ 59

See you next time!

Have a nice week!

→ 60

