

Datastructures and Algorithms

Recurrence Equations, Induction, Master Method, Runtime Analysis

Adel Gavranović — ETH Zürich — 2025

Overview

Learning Objectives Landau Notation Quiz Analyse the running time of (recursive) Functions

Solving Simple Recurrence Equations Sorting Algorithms

Quiz

Stable and In-Situ Sorting Algorithms In-Class Code-Examples Past Exam Questions Tips for **code** expert

n.ethz.ch/~agavranovic

1. Follow-up

Slide 18 "Motivational Example"

Slide 18 "Motivational Example"

■ I have relayed the feedback regarding the missing definition for +

Slide 53 "Altklausur 2020: Aufgabe 2a) - Solution"

Slide 18 "Motivational Example"

■ I have relayed the feedback regarding the missing definition for +

Slide 53 "Altklausur 2020: Aufgabe 2a) — Solution"

Due to time constraints, we're not going to go over this exam question again, but you're probably going to be able to solve it after this session

2. Feedback regarding code expert

■ If you want feedback for Code, please make sure to mention it at the very top of the code with "FEEDBACK PLEASE" (or similar)

- If you want feedback for Code, please make sure to mention it at the very top of the code with "FEEDBACK PLEASE" (or similar)
- I can't recommend this enough: Check out the reference solution each week and double check your understanding

- If you want feedback for Code, please make sure to mention it at the very top of the code with "FEEDBACK PLEASE" (or similar)
- I can't recommend this enough: Check out the reference solution each week and double check your understanding
- If I ever seem needlessly strict (do tell me!), It's only because I really want you all to pass the exam (well)

Big-O-Notation

Big-O-Notation

■ You might've seen in the lectures: for Landau-notation it doesn't matter if you write log₂ or any other base (log_b) since they're asymptotically equivalent! (thus we usually just write log with no specified base)

Big-O-Notation

■ You might've seen in the lectures: for Landau-notation it doesn't matter if you write log₂ or any other base (log_b) since they're asymptotically equivalent! (thus we usually just write log with no specified base)

Asymptotic Growth

Big-O-Notation

■ You might've seen in the lectures: for Landau-notation it doesn't matter if you write log₂ or any other base (log_b) since they're asymptotically equivalent! (thus we usually just write log with no specified base)

Asymptotic Growth

Ideally, you'd have a ranking on your cheat sheet (or know it by heart) and then you just apply some logic and analysis to determine a ranking for some given asymptotic complexities

Any questions regarding **code** expert on your part?

3. Learning Objectives

- □ Be able to solve "rank-by-complexity" tasks
- □ Be able to set up *recurrence equations* from Code Snippets
- □ Be able to solve *recurrence equations* and solution's correctness

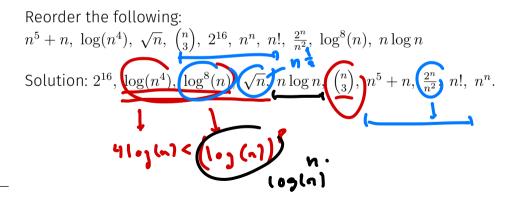
4. Summary

Getting on the same page

Give a correct definition of the set $\Theta(f)$ as compact as possible analogously to the definitions for sets $\mathcal{O}(f)$ and $\Omega(f)$.

Give a correct definition of the set $\Theta(f)$ as compact as possible analogously to the definitions for sets $\mathcal{O}(f)$ and $\Omega(f)$.

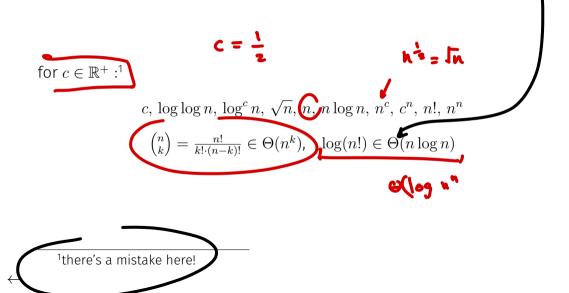
$$\Theta(f) = \{g : \mathbb{N} \to \mathbb{R} \mid \exists a > 0, \ b > 0, \ n_0 \in \mathbb{N} : a \cdot f(n) \le g(n) \le f(n) \ \forall n \ge n_0 \}$$


Give a correct definition of the set $\Theta(f)$ as compact as possible analogously to the definitions for sets $\mathcal{O}(f)$ and $\Omega(f)$.

$$\Theta(f) = \{g: \mathbb{N} \to \mathbb{R} \mid \exists a > 0, \ b > 0, \ n_0 \in \mathbb{N} : a \cdot f(n) \le g(n) \le b \cdot f(n) \ \forall n \ge n_0 \}$$

 $\Theta(f) = \{g: \mathbb{N} \to \mathbb{R} \mid \exists c > 0, \ n_0 \in \mathbb{N} : \frac{1}{c} \cdot f(n) \le g(n) \le c \cdot f(n) \ \forall n \ge n_0 \}$

Prove or disprove the following statements, where $f, q: \mathbb{N} \to \mathbb{R}^+$. (a) $f \in \mathcal{O}(g)$ if and only if $g \in \Omega(f)$. O(log(n)) (e) $\log_a(n) \in \Theta(\log_b(n))$ for all constants $a, b \in \mathbb{N} \setminus \{1\}$ $\mathbf{X}(g)$ If $f_1, f_2 \in \mathcal{O}(q)$ and $f(n) := f_1(n) \cdot f_2(n)$, then $f \in \mathcal{O}(q)$. 6(n) $f_{n=n} \rightarrow f = f_{1} \cdot f_{n} = 3n^{2} \notin \mathcal{O}(g) \qquad \begin{array}{c} g(n) = n \\ f_{1}, f_{2} = 1 \\ f_{2} = n \in \mathcal{O}(h) \end{array}$ Sorting functions: if function f is left to function g, then $f \in \mathcal{O}(g)$.


Reorder the following: $n^5 + n, \log(n^4), \sqrt{n}, \binom{n}{3}, 2^{16}, n^n, n!, \frac{2^n}{n^2}, \log^8(n), n \log n$ Sorting functions: if function f is left to function g, then $f \in \mathcal{O}(g)$.

What I had on my Cheatsheet

¹there's a mistake here!

What I had on my Cheatsheet

1. Have the "ranking" on my cheatsheet

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right
- 3. Constants (no matter how large) all the way to the left

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right
- 3. Constants (no matter how large) all the way to the left
- 4. All "obviously \log "-things rather to the left

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right
- 3. Constants (no matter how large) all the way to the left
- 4. All "obviously \log "-things rather to the left
- 5. Resolve/rewrite binomial stuff to polynomials

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right
- 3. Constants (no matter how large) all the way to the left
- 4. All "obviously \log "-things rather to the left
- 5. Resolve/rewrite binomial stuff to polynomials
- 6. Do not forget that $\sqrt[n]{n} = n^{\frac{1}{3}}$

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right
- 3. Constants (no matter how large) all the way to the left
- 4. All "obviously \log "-things rather to the left
- 5. Resolve/rewrite binomial stuff to polynomials
- 6. Do not forget that $\sqrt{n} = n^{\frac{1}{2}}$
- 7. All obvious polynomial-in-n things rather to the right

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right
- 3. Constants (no matter how large) all the way to the left
- 4. All "obviously \log "-things rather to the left
- 5. Resolve/rewrite binomial stuff to polynomials
- 6. Do not forget that $\sqrt{n} = n^{\frac{1}{2}}$
- 7. All obvious polynomial-in-n things rather to the right
- 8. Where it's not obvious:
 - Switch on your brain and make comparisons

My personal approach to solving them

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on n to the right
- 3. Constants (no matter how large) all the way to the left
- 4. All "obviously \log "-things rather to the left
- 5. Resolve/rewrite binomial stuff to polynomials
- 6. Do not forget that $\sqrt{n} = n^{\frac{1}{2}}$
- 7. All obvious polynomial-in-n things rather to the right
- 8. Where it's not obvious:
 - Switch on your brain and make comparisons
 - (Analysis I was actually useful!)

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?
 $n \checkmark$
 $n^2 + 1$

Is $f \in \mathcal{O}(n^2)$, if $f(n) = \dots$? $n \checkmark$ $n^2 + 1 \checkmark$ $\log^4(n^2)$

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?
 $n \checkmark$
 $n^2 + 1 \checkmark$
 $\log^4(n^2) \checkmark$
 $n \log(n^2) =$

Is $f \in \mathcal{O}(n^2)$, if $f(n) = \dots$? $n \checkmark$ $n^2 + 1 \checkmark$ $\log^4(n^2) \checkmark$ $n \log(n^2) \checkmark$ n^{π}

Is $f \in \mathcal{O}(n^2)$, if f(n) = ...? $n \checkmark$ $n^2 + 1 \checkmark$ $\log^4(n^2) \checkmark$ $n \log(n^2) \checkmark$ $n^{\pi} \bigstar (\pi \approx 3.14 > 2)$

Is $f \in \mathcal{O}(n^2)$, if $f(n) = \dots$? $n \checkmark$ $n^2 + 1 \checkmark$ $\log^4(n^2) \checkmark$ $n \log(n^2) \checkmark$ $n^{\pi} \And (\pi \approx 3.14 > 2)$ $n \cdot 2^{16}$

Is $f \in \mathcal{O}(n^2)$, if $f(n) = \ldots$? ■ n ✓ $n^2 + 1$ $\log^4(n^2)$ \square $n \log(n^2) \checkmark$ ■ $n^{\pi} \times (\pi \approx 3.14 > 2)$ $n \cdot 2^{16}$ $n^2 \cdot 2^{16}$

Is $f \in \mathcal{O}(n^2)$, if $f(n) = \dots$? ■ n ✓ $n^2 + 1$ $\log^4(n^2)$ \square $n \log(n^2) \checkmark$ $n^{\pi} \times (\pi \approx 3.14 > 2)$ $n \cdot 2^{16}$ $n^2 \cdot 2^{16}$ 2^n

Is $f \in \mathcal{O}(n^2)$, if $f(n) = \dots$? ■ n ✓ $n^2 + 1$ $\log^4(n^2)$ \square $n \log(n^2) \checkmark$ $n^{\pi} \times (\pi \approx 3.14 > 2)$ $n \cdot 2^{16}$ $n^2 \cdot 2^{16}$ $\square 2^n X$

Is $f \in \mathcal{O}(n^2)$, if $f(n) = \dots$? ■ n ✓ $n^2 + 1$ $\log^4(n^2)$ \square $n \log(n^2) \checkmark$ $n^{\pi} \times (\pi \approx 3.14 > 2)$ $n \cdot 2^{16}$ $n^2 \cdot 2^{16}$ $\square 2^n X$

Is
$$g \in \Omega(2n)$$
, if $g(n) = \ldots$?

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- $\blacksquare n^2 + 1 \checkmark$
- $\square \log^4(n^2)$ 🗸
- $\blacksquare \ n \log(n^2) \checkmark$
- n^{π} × ($\pi \approx 3.14 > 2$)
- $\blacksquare n \cdot 2^{16}$ 🖌
- $\blacksquare n^2 \cdot 2^{16} \checkmark$
- $\blacksquare 2^n X$

Is
$$g \in \Omega(2n)$$
, if $g(n) = \dots$?

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- ∎ n 🖌
- $\blacksquare n^2 + 1 \checkmark$
- $\blacksquare \log^4(n^2)$ 🗸
- $\blacksquare \ n \log(n^2) \checkmark$
- n^{π} × ($\pi \approx 3.14 > 2$)
- $\blacksquare n \cdot 2^{16}$ 🖌
- $\blacksquare n^2 \cdot 2^{16} \checkmark$
- $\blacksquare 2^n X$

Is
$$g \in \Omega(2n)$$
, if $g(n) = \dots$?
 $1 \not$

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- ∎ n 🖌
- $\blacksquare n^2 + 1 \checkmark$
- $\blacksquare \log^4(n^2) \checkmark$
- $\blacksquare \ n \log(n^2) \checkmark$
- n^{π} × ($\pi \approx 3.14 > 2$)
- $\blacksquare n \cdot 2^{16}$ 🖌
- $\blacksquare n^2 \cdot 2^{16} \checkmark$
- $\blacksquare 2^n X$

s
$$g \in \Omega(2n)$$
, if $g(n) = \dots$?
1 X
n

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- ∎ n 🖌
- $\blacksquare n^2 + 1 \checkmark$
- $\blacksquare \log^4(n^2) \checkmark$
- $\blacksquare \ n \log(n^2) \checkmark$
- n^{π} × ($\pi \approx 3.14 > 2$)
- $\blacksquare n \cdot 2^{16}$ 🖌
- $\blacksquare \ n^2 \cdot 2^{16} \ \checkmark$
- $\blacksquare 2^n X$

Is
$$g \in \Omega(2n)$$
, if $g(n) = \dots$?
1 X
 $\pi \cdot n$

Is
$$f \in \mathcal{O}(n^2)$$
, if $f(n) = \dots$?

- n 🗸
- $\blacksquare n^2 + 1 \checkmark$
- $\blacksquare \log^4(n^2) \checkmark$
- $\blacksquare \ n \log(n^2) \checkmark$
- n^{π} × ($\pi \approx 3.14 > 2$)
- $\blacksquare n \cdot 2^{16}$ 🖌
- $\blacksquare n^2 \cdot 2^{16} \checkmark$
- $\blacksquare 2^n X$

Is
$$g \in \Omega(2n)$$
, if $g(n) = \dots$?
1 X
 $\pi \cdot n$
 $\pi^{42} \cdot n$

- Is $f \in \mathcal{O}(n^2)$, if $f(n) = \dots$? $n \checkmark$ $n^2 + 1 \checkmark$
 - $\blacksquare \ \log^4(n^2) \checkmark$
 - $\blacksquare \ n \log(n^2) \checkmark$
 - $\blacksquare n^{\pi} \not (\pi \approx 3.14 > 2)$
 - $\blacksquare \ n \cdot 2^{16} \ \checkmark$
 - $\blacksquare \ n^2 \cdot 2^{16} \ \checkmark$
 - $\blacksquare 2^n X$

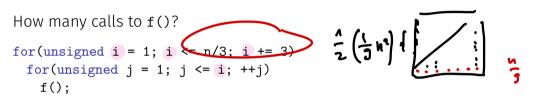
Is
$$g \in \Omega(2n)$$
, if $g(n) = \dots$?
1 X
 $\pi \cdot n$
 $\pi^{42} \cdot n$
 $\log(n)$

- Is $f \in \mathcal{O}(n^2)$, if $f(n) = \dots$? $n \checkmark$ $n^2 + 1 \checkmark$ $\log^4(n^2) \checkmark$ $n \log(n^2) \checkmark$
 - n^{π} × ($\pi \approx 3.14 > 2$)
 - $\blacksquare n \cdot 2^{16} \checkmark$
 - $\blacksquare \ n^2 \cdot 2^{16} \ \checkmark$
 - $\blacksquare 2^n X$

Is
$$g \in \Omega(2n)$$
, if $g(n) = \dots$?
1 X
 n X
 $\pi \cdot n$ X
 $\pi^{42} \cdot n$ X
 $\log(n)$ X
 \sqrt{n}

- Is $f \in \mathcal{O}(n^2)$, if $f(n) = \dots$? $n \checkmark$ $n^2 + 1 \checkmark$
 - $\blacksquare \ \log^4(n^2) \checkmark$
 - $\blacksquare \ n \log(n^2) ~\checkmark$
 - n^{π} × ($\pi \approx 3.14 > 2$)
 - $\blacksquare \ n \cdot 2^{16} \ \checkmark$
 - $\blacksquare n^2 \cdot 2^{16} \checkmark$
 - $\blacksquare 2^n X$

Is
$$g \in \Omega(2n)$$
, if $g(n) = \dots$
1 X
 n X
 $\pi \cdot n$ X
 $\pi^{42} \cdot n$ X
 $\log(n)$ X
 \sqrt{n} X


?

6. Analyse the running time of (recursive) Functions

Analysis

How many calls to
$$f()$$
?
for (unsigned $i = 1; i \le n/3; i += 3)$
for (unsigned $j = 1; j \le i; ++j)$
 $f(f();)$
 $f();$
 $f($

D

The code fragment implies $\Theta(n^2)$ calls to f(): the outer loop is executed n/9 times and the inner loop contains *i* calls to f()

for (unsigned i = 0; i < n; ++i) {
$$\int \sigma(n)$$

for (unsigned j = 100; j*j >= 1; --j) $\int \sigma(4)$
f();
for (unsigned k = 1; k <= n; k *= 2) $\int \sigma(\log(n))$
f();
 $\int \sigma(n) \cdot (\sigma(n) + \sigma(\log(n)))^{n}$
 $\neg \sigma(n) \cdot (\sigma(n))$

```
for(unsigned i = 0; i < n; ++i) {
  for(unsigned j = 100; j*j >= 1; --j)
    f();
  for(unsigned k = 1; k <= n; k *= 2)
    f();
}</pre>
```

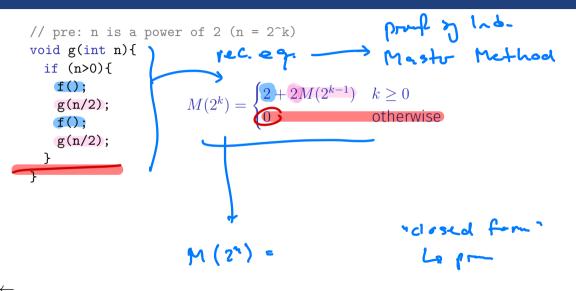
We can ignore the first inner loop because it contains only a constant number of calls to f()

```
for(unsigned i = 0; i < n; ++i) {
  for(unsigned j = 100; j*j >= 1; --j)
    f();
  for(unsigned k = 1; k <= n; k *= 2)
    f();
}</pre>
```

We can ignore the first inner loop because it contains only a constant number of calls to f()

The second inner loop contains $\lfloor \log_2(n) \rfloor + 1$ calls to f(). Summing up yields $\Theta(n \log(n))$ calls.

T(n): # calls to f()


void g(unsigned n) { if (n>0){ g(n-1); f();

```
void g(unsigned n) {
    if (n>0){
        g(n-1);
        f();
    }
}
```

$$M(n) = M(n-1) + 1 = M(n-2) + 2 = \dots = M(0) + n = n \in \Theta(n)$$

```
// pre: n is a power of 2
// n = 2^k
void g(int n){
    if (n>0){
        g(n/2);
        f()
    }
}
```

$$M(n) = 1 + M(n/2) = 1 + 1 + M(n/4) = k + M(n/2^k) \in \Theta(\log n)$$


```
// pre: n is a power of 2 (n = 2^k)
void g(int n){
  if (n>0){
    f();
                            M(2^k) = \begin{cases} 2+2M(2^{k-1}), & k \ge 0\\ 0, & \text{otherwise} \end{cases}
    g(n/2);
    f();
    g(n/2);
  }
}
```

$$M(n) = 2M\left(\frac{n}{2}\right) + 2 = 4M\left(\frac{n}{4}\right) + 4 + 2 = 8M\left(\frac{n}{8}\right) + 8 + 4 + 2$$
$$= 2(n + n/2 + n/4 + \dots + 1) \in \Theta(n)$$

```
// pre: n is a power of 2
// n = 2^k
void g(int n){
  if (n>0){
   g(n/2);
   g(n/2);
  }
 for (int i = 0; i < n; ++i){</pre>
   f();
 }
}
```

```
// pre: n is a power of 2
// n = 2<sup>k</sup>
void g(int n){
  if (n>0){
  g(n/2);
  g(n/2);
 for (int i = 0; i < n; ++i){
   f();
```

 $M(n) = 2M(n/2) + n = 4M(n/4) + n + 2n/2 = \dots = (k+1)n \in \Theta(n\log n)$

```
void g(unsigned n) {
  for (unsigned i = 0; i<n ; ++i) {
    g(i)
  }
  f();
}</pre>
```

```
void g(unsigned n) {
  for (unsigned i = 0; i<n ; ++i) {
    g(i)
  }
  f();
}
T(0) = 1</pre>
```

```
void g(unsigned n) {

for (unsigned i = 0; i<n ; ++i) {

g(i)

f();

}

T(0) = 1

T(n) = 1 + \sum_{i=0}^{n-1} T(i)
```

```
void g(unsigned n) {
  for (unsigned i = 0; i<n ; ++i) {
    g(i)
  }
  f();
}
T(0) = 1 + \sum_{i=0}^{n-1} T(i) \qquad \qquad \boxed{n \mid 0 \mid 1 \mid 2 \mid 3 \mid 4} \\ T(n) \mid 1 \mid 2 \mid 4 \mid 8 \mid 16 \end{cases}
```

```
void g(unsigned n) {
  for (unsigned i = 0; i<n ; ++i) {
    g(i)
  }
  f();
}
T(0) = 1 \\ T(n) = 1 + \sum_{i=0}^{n-1} T(i) 
n | 0 | 1 | 2 | 3 | 4 \\ T(n) | 1 | 2 | 4 | 8 | 16
```

Hypothesis: $T(n) = 2^n$.

Hypothesis: $T(n) = 2^n$. Induction step:

$$T(n) = 1 + \sum_{i=0}^{n-1} 2^{i}$$
$$= 1 + 2^{n} - 1 = 2^{n}$$

Hypothesis: $T(n) = 2^n$. Induction step:

$$T(n) = 1 + \sum_{i=0}^{n-1} 2^{i}$$
$$= 1 + 2^{n} - 1 = 2^{n}$$

```
void g(unsigned n) {
  for (unsigned i = 0; i<n ; ++i) {
    g(i)
  }
  f();
}</pre>
```

You can also see it directly:

$$T(n) = 1 + \sum_{i=0}^{n-1} T(i)$$

$$\Rightarrow T(n-1) = 1 + \sum_{i=0}^{n-2} T(i)$$

$$\Rightarrow T(n) = T(n-1) + T(n-1) = 2T(n-1)$$

7. Solving Simple Recurrence Equations

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + \frac{n}{2} + 1, & n > 1\\ 3 & n = 1 \end{cases}$$

Specify a closed (non-recursive), simple formula for T(n) and prove it using mathematical induction. Assume that n is a power of 2.

$$\begin{split} T(2^k) &= 2T(2^{k-1}) + 2^k/2 + 1 \\ &= 2(2(T(2^{k-2}) + 2^{k-1}/2 + 1) + 2^k/2 + 1 = \dots) \\ &= 2^kT(2^{k-k}) + \underbrace{2^k/2 + \dots + 2^k/2}_k + 1 + 2 + \dots + 2^{k-1} \\ &= 3n + \frac{n}{2}\log_2 n + n - 1 \end{split}$$

 \Rightarrow Assumption $T(n) = 4n + \frac{n}{2}\log_2 n - 1$

Induction

1. Hypothesis
$$T(n) = f(n) := 4n + \frac{n}{2} \log_2 n - 1$$

2. Base Case $T(1) = 3 = f(1) = 4 - 1$.
3. Step $T(n) = f(n) \longrightarrow T(2 \cdot n) = f(2n)$ ($n = 2^k$ for some $k \in \mathbb{N}$):

$$T(2n) = 2T(n) + n + 1$$

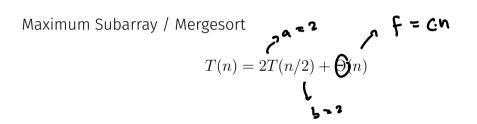
$$\stackrel{i.h.}{=} 2(4n + \frac{n}{2}\log_2 n - 1) + n + 1$$

$$= 8n + n\log_2 n - 2 + n + 1$$

$$= 8n + n\log_2 n + n\log_2 2 - 1$$

$$= 8n + n\log_2 2n - 1$$

$$= f(2n).$$


Master Method

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & n > 1\\ f(1) & n = 1 \end{cases} \quad (a, b \in \mathbb{N}^+)$$

1. $f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0 \Longrightarrow T(n) \in \Theta(n^{\log_b a})$

2.
$$f(n) = \Theta(n^{\log_b a}) \Longrightarrow T(n) \in \Theta(n^{\log_b a} \log n)$$

3. $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 and all sufficiently large $n \Longrightarrow T(n) \in \Theta(f(n))$

Maximum Subarray / Mergesort

$$T(n) = 2T(n/2) + \Theta(n)$$

$$a = 2, b = 2, f(n) = cn = cn^1 = cn^{\log_2 2} \stackrel{[2]}{\Longrightarrow} T(n) = \Theta(n \log n)$$

Naive Matrix Multiplication Divide & Conquer²

$$T(n) = 8T(n/2) + \Theta(n^2)$$

²Treated in the course later on

Naive Matrix Multiplication Divide & Conquer²

$$T(n) = 8T(n/2) + \Theta(n^2)$$
$$a = 8, b = 2, f(n) = cn^2 \in \mathcal{O}(n^{\log_2 8 - 1}) \stackrel{[1]}{\Longrightarrow} T(n) \in \Theta(n^3)$$

²Treated in the course later on

Strassens Matrix Multiplication Divide & Conquer³

$$T(n) = 7T(n/2) + \Theta(n^2)$$

³Treated in the course later on

Strassens Matrix Multiplication Divide & Conquer³

$$T(n) = 7T(n/2) + \Theta(n^2)$$
$$a = 7, b = 2, f(n) = cn^2 \in \mathcal{O}(n^{\log_2 7 - \epsilon}) \stackrel{[1]}{\Longrightarrow} T(n) \in \Theta(n^{\log_2 7}) \approx \Theta(n^{2.8})$$

³Treated in the course later on

 \leftarrow

$$T(n) = 2T(n/4) + \Theta(n)$$

$$T(n) = 2T(n/4) + \Theta(n)$$

$$a = 2, b = 4, f(n) = cn \in \Omega(n^{\log_4 2 + 0.5}), 2f(n/4) = c\frac{n}{2} \leq \frac{c}{2}n^1 \stackrel{[3]}{\Longrightarrow} T(n) \in \Theta(n)$$

←

$$T(n) = 2T(n/4) + \underbrace{\Theta(n^2)}_{\mathbf{b} = \mathbf{4}} \underbrace{\mathsf{F}(n)}_{\mathbf{b} = \mathbf{4}}$$

 \leftarrow

$$\begin{array}{c} \text{Sn:ppet}\\ \textbf{Dee} \cdot \textbf{e_1} \cdot\\ \textbf{Dee} \cdot \textbf{e_1} \cdot\\ \textbf{f}(n) = 2T(n/4) + \Theta(n^2)\\ T(n) \in \Theta(n^2) \end{array}$$

Equation must be convertible into form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad (a \ge 1, b > 1)$$

Equation must be convertible into form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad (a \ge 1, b > 1)$$

where:

- *a* : Number of Subproblems
- 1/b : Division Quotient
- f(n) : Div- and Summing Costs

Equation must be convertible into form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad (a \ge 1, b > 1)$$

where:

- *a* : Number of Subproblems
- 1/b : Division Quotient
- f(n) : Div- and Summing Costs

Then we can proceed:

1. Convert the Recurrence Equation into the form above

Equation must be convertible into form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad (a \ge 1, b > 1)$$

where:

- *a* : Number of Subproblems
- 1/b : Division Quotient
- f(n) : Div- and Summing Costs

Then we can proceed:

1. Convert the Recurrence Equation into the form above

2. Calculate
$$K := \log_b a$$

Equation must be convertible into form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad (a \ge 1, b > 1)$$

where:

- *a* : Number of Subproblems
- 1/b : Division Quotient
- f(n) : Div- and Summing Costs

Then we can proceed:

- 1. Convert the Recurrence Equation into the form above
- 2. Calculate $K := \log_b a$

3. Make case distinction ($\varepsilon > 0$):

Equation must be convertible into form

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad (a \ge 1, b > 1)$$

K=2

f

where:

- : Number of Subproblems a
- : Division Quotient 1/b
- : Div- and Summing Costs f(n)Then we can proceed:
 - 1. Convert the Recurrence Equation into the form above (n)= NA
 - 2. Calculate $K := \log_{h} a$

3. Make case distinction ($\varepsilon > 0$):

 $T(n) \in \Theta($

 $T(n) \in \Theta$

 $\wedge af(\frac{n}{h}) \leq cf(n), \ 0 < c < 1$

 $\log(n)$

Personal Approach to "Solving RecEqs"

"Plug and Chuck"-Approach

- 1. Expand few times
- 2. Notice patterns (careful with multiplications on T(n))
- 3. Write down explicitly
- 4. Formulate explicit formula f(n)
- 5. Prove via induction

Personal Approach to "Calls of f()"

- 1. Loops: just multiply outer runtime with inner to get whole runtime (works recursively)
- 2. Just brute-force calculate $g(0), g(1), g(2), g(3), \ldots$ and try to identify trends
- 3. If too hard: consider $\Theta(2^n)$
- 4. If necessary/possible, simply set up and solve RecEqs via Master Method
- 5. If asked provide proof (by induction)

8. Sorting Algorithms

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

5	4	1	3	2		5	4	1	3	2		5	4	1	3	2	
1	4	5	3	2		4	1	3	2	5		4	5	1	3	2	
1	2	5	3	4		1	3	2	4	5		1	4	5	3	2	
1	2	3	5	4		1	2	3	4	5		1	3	4	5	2	
1	2	3	4	5								1	2	3	4	5	

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

	5	4	1	3	2			5	4	1	3	2			5	4	1	3	2	
	1	4	5	3	2			4	1	3	2	5		-	4	5	1	3	2	
	1	2	5	3	4			1	3	2	4	5		-	1	4	5	3	2	
	1	2	3	5	4			1	2	3	4	5		-	1	3	4	5	2	
	1	2	3	4	5									-	1	2	3	4	5	
selection																				

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

	5	4	1	3	2			5	4	1	3	2		5	4	1	3	2	
	1	4	5	3	2	-		4	1	3	2	5		4	5	1	3	2	
	1	2	5	3	4	-		1	3	2	4	5	•	1	4	5	3	2	
	1	2	3	5	4	-		1	2	3	4	5	•	1	3	4	5	2	
	1	2	3	4	5	-								1	2	3	4	5	
selection								ubb	lesc	ort									

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

	5	4	1	3	2			5	4	1	3	2			5	4	1	3	2	
	1	4	5	3	2	-		4	1	3	2	5		-	4	5	1	3	2	
	1	2	5	3	4	-		1	3	2	4	5	•	-	1	4	5	3	2	
	1	2	3	5	4	-		1	2	3	4	5	•	-	1	3	4	5	2	
	1	2	3	4	5	-								-	1	2	3	4	5	
se	lect	tion	l				out	bl	.esc	ort				ins	sert	ion				

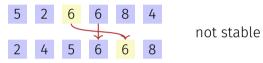
									13
2	7	5	6	3	8	9	10	15	13

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	8	9	10	15	13
2	7	5	6	3					

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	8	9	10	15	13
2	7	5	6	3	8				

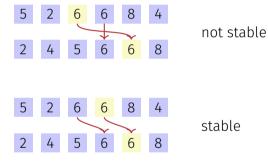
8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	8	9	10	15	13
2	7	5	6	3	8	9	10	15	13

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	8	9	10	15	13
2	7	5	6	3	8	9	10	15	13
2	3	5	6	7					

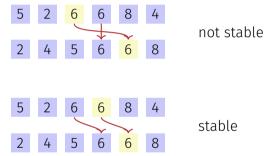

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	8	9	10	15	13
2	7	5	6	3	8	9	10	15	13
2	3	5	6	7	8				

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	8	9	10	15	13
2	7	5	6	3	8	9	10	15	13
2	3	5	6	7	8	9			

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	8	9	10	15	13
2	7	5	6	3	8	9	10	15	13
2	3	5	6	7	8	9	10	15	13


Stable and in-situ sorting algorithms

 Stable sorting algorithms don't change the relative position of two equal elements.


Stable and in-situ sorting algorithms

 Stable sorting algorithms don't change the relative position of two equal elements.

Stable and in-situ sorting algorithms

Stable sorting algorithms don't change the relative position of two equal elements.

 In-situ algorithms require only a constant amount of additional memory. Discussion: Which of the sorting algorithms are stable? Which are in-situ? (How) can we make them stable / in-situ?

9. In-Class Code-Examples

Implement (Binary) Search from Scratch

- \longrightarrow CodeExpert
- Use the result to implement binary insertion sort.
- \longrightarrow CodeExpert

10. Past Exam Questions

Past Exam 2020: Task 2b)

(b) Gegeben sei die folgende Rekursionsgleichung: Consider the following recursion equation:

$$T(n) = \begin{cases} 2T(\frac{n}{4}) + 1, & n > 1\\ 1 & n = 1 \end{cases}$$

Geben Sie eine geschlossene (nicht rekursive), einfache Formel für T(n) an und beweisen Sie diese mittels vollständiger Induktion. Gehen Sie davon aus, dass n eine Potenz von 4 ist.

Hinweis:

Für $q \neq 1$ gilt $\sum_{i=0}^{k} q^i = \frac{q^{k+1}-1}{q-1}$.

Specify a closed (non-recursive), simple formula for T(n) and prove it using mathematical induction. Assume that n is a power of 4. Hint:

For $q \neq 1$ it holds that $\sum_{i=0}^{k} q^i = \frac{q^{k+1}-1}{q-1}$.

Past Exam 2020: Task 2b) — Solution

$$\begin{split} T(4^k) &= 2T(4^{k-1}) + 1 \\ &= 2(2(T(4^{k-2}) + 1) + 1 = \dots \\ &= 2^kT(4^{k-k}) + 2^{k-1} + 2^{k-2} + \dots + 2 + 1 \\ &= \sum_{j=0}^k 2^j = 2^{k+1} - 1 \\ &= 2 \cdot 2^{\log_4 n} - 1 = 2 \cdot n^{\log_4 2} - 1 = 2\sqrt{n} - 1 \end{split}$$

Assumption: $T(n) = 2\sqrt{n} - 1$ Induktion:

1.Hypothesis $T(n) = f(n) := 2\sqrt{n} - 1$

2.Base Case $T(1) = 1 = f(1) = 2\sqrt{1} - 1 = 1$.

3.Step $T(n) = f(n) \longrightarrow T(4 \cdot n) = f(4 \cdot n)$ $(n = 4^k$ for some $k \in \mathbb{N})$: $\begin{aligned} T(4n) &= 2T(n) + 1 \\ &\stackrel{i.h.}{=} 2(2 \cdot \sqrt{n} - 1) + 1 \\ &= 2\sqrt{4n} - 2 + 1 \\ &= 2\sqrt{4n} - 1 \\ &= f(4n). \end{aligned}$

Past Exam 2020: Task 2e)

}

Gegeben sei die folgende Rekursionsgleichung: Consider the following recursion equation:

$$T(n) = \begin{cases} 2T(n/4) + \log_4 n, & n > 1\\ 0 & n \le 1 \end{cases}$$

Schreiben Sie eine Funktion g, die bei Aufruf von g(n) genau T(n) Aufrufe von f erzeugt. Nehmen Sie an, dass $n = 4^k$ für ein $k \ge 0$. Write a function g that when called as g(n) will produce T(n) calls to f. Assume that $n = 4^k$ for some $k \ge 0$.

```
// pre: n = 4^k for some k >= 0
void g(int n){
```

Past Exam 2020: Task 2e) — Solution

```
if (n > 1){
   g(n/4); g(n/4);
    while (n > 1)
       f();
       n /= 4;
    }
// } the other brace was closed
// in the exercise description
```

11. Tips for **code** expert

Task "Prefix Sum in 2D"

⁴There's an implementation in the code examples on **code** expert

Task "Prefix Sum in 2D"

- Study the Prefix Sum in 1D⁴ well and go from there
- Make sketches!

⁴There's an implementation in the code examples on **code** expert

Task "Prefix Sum in 2D"

- Study the Prefix Sum in 1D⁴ well and go from there
- Make sketches!

Task "Sliding Window"

⁴There's an implementation in the code examples on **code** expert

Task "Prefix Sum in 2D"

- Study the Prefix Sum in 1D⁴ well and go from there
- Make sketches!

Task "Sliding Window"

Sketches!

⁴There's an implementation in the code examples on **code** expert

Task "Prefix Sum in 2D"

- Study the Prefix Sum in 1D⁴ well and go from there
- Make sketches!

Task "Sliding Window"

Sketches!

Task "Proofs by Induction"

⁴There's an implementation in the code examples on **code** expert

Task "Prefix Sum in 2D"

- Study the Prefix Sum in 1D⁴ well and go from there
- Make sketches!

Task "Sliding Window"

Sketches!

Task "Proofs by Induction"

- The binomial formula will be useful for the second one
- Please format it well or just scan a PDF and upload it

⁴There's an implementation in the code examples on **code** expert

Task "Karatsuba Ofman"

Task "Karatsuba Ofman"

- Translate "3.3.2 Divide And Conquer" from the script into code
- Main struggle: generalizing to non-"power of 2" cases
- Study the definition of .part(lo, hi) method
- Make sure to have both "subnumbers" be of equal length
- There might be issues with a silly off-by-one error due to how n/2 gets calculated be aware of that
- **Naming variable sensibly might prevent you from making silly mistakes**

12. Outro

General Questions?

TRADE OFFER

TRADE OFFER

	A REAL PROPERTY AND A REAL
i receive:	you receive:
Treceive.	you receive.
- opportunity to	- the source
teach you some	files to my D&A
Latex	cheat sheet
- submissions that look amazing thanks to LaTeX and markdown	

Have a nice week!

Lalots of follow up next time!