
Datastructures and Algorithms
Recurrence Equations, Induction, Master Method, Runtime Analysis

Adel Gavranovi! — ETH Zürich — 2025



Overview

Learning Objectives
Landau Notation Quiz
Analyse the running time of (recursive)
Functions
Solving Simple Recurrence Equations
Sorting Algorithms

Quiz
Stable and In-Situ Sorting Algorithms

In-Class Code-Examples
Past Exam Questions
Tips for code expert

n.ethz.ch/~agavranovic

! Material

! Webpage

! Mail

→ 1



1. Follow-up

→ 2



Follow-up from last session

Slide 18 "Motivational Example"

I have relayed the feedback regarding the missing definition for +
Slide 53 "Altklausur 2020: Aufgabe 2a) — Solution"

Due to time constraints, we’re not going to go over this exam question
again, but you’re probably going to be able to solve it after this session

→ 3



Follow-up from last session

Slide 18 "Motivational Example"
I have relayed the feedback regarding the missing definition for +

Slide 53 "Altklausur 2020: Aufgabe 2a) — Solution"

Due to time constraints, we’re not going to go over this exam question
again, but you’re probably going to be able to solve it after this session

→ 3



Follow-up from last session

Slide 18 "Motivational Example"
I have relayed the feedback regarding the missing definition for +

Slide 53 "Altklausur 2020: Aufgabe 2a) — Solution"
Due to time constraints, we’re not going to go over this exam question
again, but you’re probably going to be able to solve it after this session

→ 3



2. Feedback regarding code expert

→ 4



General things regarding code expert

If you want feedback for Code, please make sure to mention it at the
very top of the code with "FEEDBACK PLEASE" (or similar)
I can’t recommend this enough: Check out the reference solution each
week and double check your understanding
If I ever seem needlessly strict (do tell me!), It’s only because I really
want you all to pass the exam (well)

→ 5



General things regarding code expert

If you want feedback for Code, please make sure to mention it at the
very top of the code with "FEEDBACK PLEASE" (or similar)

I can’t recommend this enough: Check out the reference solution each
week and double check your understanding
If I ever seem needlessly strict (do tell me!), It’s only because I really
want you all to pass the exam (well)

→ 5



General things regarding code expert

If you want feedback for Code, please make sure to mention it at the
very top of the code with "FEEDBACK PLEASE" (or similar)
I can’t recommend this enough: Check out the reference solution each
week and double check your understanding

If I ever seem needlessly strict (do tell me!), It’s only because I really
want you all to pass the exam (well)

→ 5



General things regarding code expert

If you want feedback for Code, please make sure to mention it at the
very top of the code with "FEEDBACK PLEASE" (or similar)
I can’t recommend this enough: Check out the reference solution each
week and double check your understanding
If I ever seem needlessly strict (do tell me!), It’s only because I really
want you all to pass the exam (well)

→ 5



Specific things regarding code expert

Big-O-Notation

You might’ve seen in the lectures: for Landau-notation it doesn’t matter
if you write log2 or any other base (logb) since they’re asymptotically
equivalent! (thus we usually just write log with no specified base)

Asymptotic Growth
Ideally, you’d have a ranking on your cheat sheet (or know it by heart)
and then you just apply some logic and analysis to determine a ranking
for some given asymptotic complexities

→ 6



Specific things regarding code expert

Big-O-Notation
You might’ve seen in the lectures: for Landau-notation it doesn’t matter
if you write log2 or any other base (logb) since they’re asymptotically
equivalent! (thus we usually just write log with no specified base)

Asymptotic Growth
Ideally, you’d have a ranking on your cheat sheet (or know it by heart)
and then you just apply some logic and analysis to determine a ranking
for some given asymptotic complexities

→ 6



Specific things regarding code expert

Big-O-Notation
You might’ve seen in the lectures: for Landau-notation it doesn’t matter
if you write log2 or any other base (logb) since they’re asymptotically
equivalent! (thus we usually just write log with no specified base)

Asymptotic Growth

Ideally, you’d have a ranking on your cheat sheet (or know it by heart)
and then you just apply some logic and analysis to determine a ranking
for some given asymptotic complexities

→ 6



Specific things regarding code expert

Big-O-Notation
You might’ve seen in the lectures: for Landau-notation it doesn’t matter
if you write log2 or any other base (logb) since they’re asymptotically
equivalent! (thus we usually just write log with no specified base)

Asymptotic Growth
Ideally, you’d have a ranking on your cheat sheet (or know it by heart)
and then you just apply some logic and analysis to determine a ranking
for some given asymptotic complexities

→ 6



Any questions regarding code expert on your part?

→ 7



3. Learning Objectives

→ 8



Objectives

↭ Be able to solve "rank-by-complexity" tasks
↭ Be able to set up recurrence equations from Code Snippets
↭ Be able to solve recurrence equations and solution’s correctness

→ 9



4. Summary

→ 10



Getting on the same page

→ 11



Landau Notation

Give a correct definition of the set !(f) as compact as possible
analogously to the definitions for sets O(f) and ”(f).

!(f) = {g : ↑ | ↓a > 0, b > 0, n0 ↔ : a · f(n) ↗ g(n) ↗

b · f(n) ↘n ≃ n0}

!(f) = {g : ↑ | ↓c > 0, n0 ↔ : 1
c · f(n) ↗ g(n) ↗ c · f(n) ↘n ≃ n0}

→ 12



Landau Notation

Give a correct definition of the set !(f) as compact as possible
analogously to the definitions for sets O(f) and ”(f).

!(f) = {g : ↑ | ↓a > 0, b > 0, n0 ↔ : a · f(n) ↗ g(n) ↗

b · f(n) ↘n ≃ n0}

!(f) = {g : ↑ | ↓c > 0, n0 ↔ : 1
c · f(n) ↗ g(n) ↗ c · f(n) ↘n ≃ n0}

→ 12



Landau Notation

Give a correct definition of the set !(f) as compact as possible
analogously to the definitions for sets O(f) and ”(f).

!(f) = {g : ↑ | ↓a > 0, b > 0, n0 ↔ : a · f(n) ↗ g(n) ↗

b · f(n) ↘n ≃ n0}

!(f) = {g : ↑ | ↓c > 0, n0 ↔ : 1
c · f(n) ↗ g(n) ↗ c · f(n) ↘n ≃ n0}

→ 12



Landau Notation

Prove or disprove the following statements, where f, g : ↑
+.

(a) f ↔ O(g) if and only if g ↔ ”(f).
(e) loga(n) ↔ !(logb(n)) for all constants a, b ↔ \ {1}

(g) If f1, f2 ↔ O(g) and f(n) := f1(n) · f2(n), then f ↔ O(g).

→ 13



Landau Notation

Sorting functions: if function f is left to function g, then f ↔ O(g).

Reorder the following:
n5 + n, log(n4), ⇐

n,
(

n
3

)
, 216, nn, n!, 2n

n2 , log8(n), n log n

Solution: 216, log(n4), log8(n), ⇐
n, n log n,

(
n
3

)
, n5 + n, 2n

n2 , n!, nn.

→ 14



Landau Notation

Sorting functions: if function f is left to function g, then f ↔ O(g).

Reorder the following:
n5 + n, log(n4), ⇐

n,
(

n
3

)
, 216, nn, n!, 2n

n2 , log8(n), n log n

Solution: 216, log(n4), log8(n), ⇐
n, n log n,

(
n
3

)
, n5 + n, 2n

n2 , n!, nn.

→ 14



What I had on my Cheatsheet

for c ↔ R+ :1

c, log log n, logc n,
⇐

n, n, n log n, nc, cn, n!, nn

(
n
k

)
= n!

k!·(n→k)! ↔ !(nk), log(n!) ↔ !(n log n)

1there’s a mistake here!
→ 15



What I had on my Cheatsheet

for c ↔ R+ :1

c, log log n, logc n,
⇐

n, n, n log n, nc, cn, n!, nn

(
n
k

)
= n!

k!·(n→k)! ↔ !(nk), log(n!) ↔ !(n log n)

1there’s a mistake here!
→ 15



My personal approach to solving them

1. Have the "ranking" on my cheatsheet

2. Move all entries with exponents dependend on n to the right
3. Constants (no matter how large) all the way to the left
4. All "obviously log"-things rather to the left
5. Resolve/rewrite binomial stu" to polynomials
6. Do not forget that

⇐
n = n

1
2

7. All obvious polynomial-in-n things rather to the right
8. Where it’s not obvious:

Switch on your brain and make comparisons
(Analysis I was actually useful!)

→ 16



My personal approach to solving them

1. Have the "ranking" on my cheatsheet
2. Move all entries with exponents dependend on n to the right

3. Constants (no matter how large) all the way to the left
4. All "obviously log"-things rather to the left
5. Resolve/rewrite binomial stu" to polynomials
6. Do not forget that

⇐
n = n

1
2

7. All obvious polynomial-in-n things rather to the right
8. Where it’s not obvious:

Switch on your brain and make comparisons
(Analysis I was actually useful!)

→ 16



My personal approach to solving them

1. Have the "ranking" on my cheatsheet
2. Move all entries with exponents dependend on n to the right
3. Constants (no matter how large) all the way to the left

4. All "obviously log"-things rather to the left
5. Resolve/rewrite binomial stu" to polynomials
6. Do not forget that

⇐
n = n

1
2

7. All obvious polynomial-in-n things rather to the right
8. Where it’s not obvious:

Switch on your brain and make comparisons
(Analysis I was actually useful!)

→ 16



My personal approach to solving them

1. Have the "ranking" on my cheatsheet
2. Move all entries with exponents dependend on n to the right
3. Constants (no matter how large) all the way to the left
4. All "obviously log"-things rather to the left

5. Resolve/rewrite binomial stu" to polynomials
6. Do not forget that

⇐
n = n

1
2

7. All obvious polynomial-in-n things rather to the right
8. Where it’s not obvious:

Switch on your brain and make comparisons
(Analysis I was actually useful!)

→ 16



My personal approach to solving them

1. Have the "ranking" on my cheatsheet
2. Move all entries with exponents dependend on n to the right
3. Constants (no matter how large) all the way to the left
4. All "obviously log"-things rather to the left
5. Resolve/rewrite binomial stu" to polynomials

6. Do not forget that
⇐

n = n
1
2

7. All obvious polynomial-in-n things rather to the right
8. Where it’s not obvious:

Switch on your brain and make comparisons
(Analysis I was actually useful!)

→ 16



My personal approach to solving them

1. Have the "ranking" on my cheatsheet
2. Move all entries with exponents dependend on n to the right
3. Constants (no matter how large) all the way to the left
4. All "obviously log"-things rather to the left
5. Resolve/rewrite binomial stu" to polynomials
6. Do not forget that

⇐
n = n

1
2

7. All obvious polynomial-in-n things rather to the right
8. Where it’s not obvious:

Switch on your brain and make comparisons
(Analysis I was actually useful!)

→ 16



My personal approach to solving them

1. Have the "ranking" on my cheatsheet
2. Move all entries with exponents dependend on n to the right
3. Constants (no matter how large) all the way to the left
4. All "obviously log"-things rather to the left
5. Resolve/rewrite binomial stu" to polynomials
6. Do not forget that

⇐
n = n

1
2

7. All obvious polynomial-in-n things rather to the right

8. Where it’s not obvious:

Switch on your brain and make comparisons
(Analysis I was actually useful!)

→ 16



My personal approach to solving them

1. Have the "ranking" on my cheatsheet
2. Move all entries with exponents dependend on n to the right
3. Constants (no matter how large) all the way to the left
4. All "obviously log"-things rather to the left
5. Resolve/rewrite binomial stu" to polynomials
6. Do not forget that

⇐
n = n

1
2

7. All obvious polynomial-in-n things rather to the right
8. Where it’s not obvious:

Switch on your brain and make comparisons

(Analysis I was actually useful!)

→ 16



My personal approach to solving them

1. Have the "ranking" on my cheatsheet
2. Move all entries with exponents dependend on n to the right
3. Constants (no matter how large) all the way to the left
4. All "obviously log"-things rather to the left
5. Resolve/rewrite binomial stu" to polynomials
6. Do not forget that

⇐
n = n

1
2

7. All obvious polynomial-in-n things rather to the right
8. Where it’s not obvious:

Switch on your brain and make comparisons
(Analysis I was actually useful!)

→ 16



5. Landau Notation Quiz

→ 17



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?

n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n

✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1

✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2)

✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2)

✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω

✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)

n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216

✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216

✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n

✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?

1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1

✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n

✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n

✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n

✁

log(n) ✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n)

✂
⇐

n ✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n

✂

→ 18



Landau Notation Quiz

Is f ↔ O(n2), if f(n) = . . . ?
n ✁

n2 + 1 ✁

log4(n2) ✁

n log(n2) ✁

nω ✂ (ω ⇒ 3.14 > 2)
n · 216 ✁

n2
· 216 ✁

2n ✂

Is g ↔ ”(2n), if g(n) = . . . ?
1 ✂

n ✁

ω · n ✁

ω42
· n ✁

log(n) ✂
⇐

n ✂

→ 18



6. Analyse the running time of (recursive)
Functions

→ 19



Analysis

How many calls to f()?

for(unsigned i = 1; i <= n/3; i += 3)
for(unsigned j = 1; j <= i; ++j)

f();

The code fragment implies !(n2) calls to f(): the outer loop is executed
n/9 times and the inner loop contains i calls to f()

→ 20



Analysis

How many calls to f()?

for(unsigned i = 1; i <= n/3; i += 3)
for(unsigned j = 1; j <= i; ++j)

f();

The code fragment implies !(n2) calls to f(): the outer loop is executed
n/9 times and the inner loop contains i calls to f()

→ 20



How many calls to f()?

for(unsigned i = 0; i < n; ++i) {
for(unsigned j = 100; j*j >= 1; --j)

f();
for(unsigned k = 1; k <= n; k *= 2)

f();
}

We can ignore the first inner loop because it contains only a constant
number of calls to f()
The second inner loop contains ⇑log2(n)⇓ + 1 calls to f(). Summing up
yields !(n log(n)) calls.

→ 21



How many calls to f()?

for(unsigned i = 0; i < n; ++i) {
for(unsigned j = 100; j*j >= 1; --j)

f();
for(unsigned k = 1; k <= n; k *= 2)

f();
}

We can ignore the first inner loop because it contains only a constant
number of calls to f()

The second inner loop contains ⇑log2(n)⇓ + 1 calls to f(). Summing up
yields !(n log(n)) calls.

→ 21



How many calls to f()?

for(unsigned i = 0; i < n; ++i) {
for(unsigned j = 100; j*j >= 1; --j)

f();
for(unsigned k = 1; k <= n; k *= 2)

f();
}

We can ignore the first inner loop because it contains only a constant
number of calls to f()
The second inner loop contains ⇑log2(n)⇓ + 1 calls to f(). Summing up
yields !(n log(n)) calls.

→ 21



How many calls to f()?

void g(unsigned n) {
if (n>0){

g(n-1);
f();

}
}

M(n) = M(n ⇔ 1) + 1 = M(n ⇔ 2) + 2 = ... = M(0) + n = n ↔ !(n)

→ 22



How many calls to f()?

void g(unsigned n) {
if (n>0){

g(n-1);
f();

}
}

M(n) = M(n ⇔ 1) + 1 = M(n ⇔ 2) + 2 = ... = M(0) + n = n ↔ !(n)

→ 22



How many calls to f()?

// pre: n is a power of 2
// n = 2^k
void g(int n){

if (n>0){
g(n/2);
f()

}
}

M(n) = 1 + M(n/2) = 1 + 1 + M(n/4) = k + M(n/2k) ↔ !(log n)

→ 23



How many calls to f()?

// pre: n is a power of 2
// n = 2^k
void g(int n){

if (n>0){
g(n/2);
f()

}
}

M(n) = 1 + M(n/2) = 1 + 1 + M(n/4) = k + M(n/2k) ↔ !(log n)

→ 23



How many calls to f()?

// pre: n is a power of 2 (n = 2^k)
void g(int n){

if (n>0){
f();
g(n/2);
f();
g(n/2);

}
}

M(2k) =




2 + 2M(2k→1) k ≃ 0
0 otherwise

M(n) = 2M
(

n

2

)
+ 2 = 4M

(
n

4

)
+ 4 + 2 = 8M

(
n

8

)
+ 8 + 4 + 2

= 2(n + n/2 + n/4 + ... + 1) ↔ !(n)

→ 24



How many calls to f()?

// pre: n is a power of 2 (n = 2^k)
void g(int n){

if (n>0){
f();
g(n/2);
f();
g(n/2);

}
}

M(2k) =




2 + 2M(2k→1) k ≃ 0
0 otherwise

M(n) = 2M
(

n

2

)
+ 2 = 4M

(
n

4

)
+ 4 + 2 = 8M

(
n

8

)
+ 8 + 4 + 2

= 2(n + n/2 + n/4 + ... + 1) ↔ !(n)
→ 24



How many calls to f()?

// pre: n is a power of 2
// n = 2^k
void g(int n){

if (n>0){
g(n/2);
g(n/2);

}
for (int i = 0; i < n; ++i){

f();
}

}

M(n) = 2M(n/2) + n = 4M(n/4) + n + 2n/2 = ... = (k + 1)n ↔ !(n log n)

→ 25



How many calls to f()?

// pre: n is a power of 2
// n = 2^k
void g(int n){

if (n>0){
g(n/2);
g(n/2);

}
for (int i = 0; i < n; ++i){

f();
}

}

M(n) = 2M(n/2) + n = 4M(n/4) + n + 2n/2 = ... = (k + 1)n ↔ !(n log n)
→ 25



How many calls to f()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
f();

}

T (0) = 1
T (n) = 1 + ∑n→1

i=0 T (i)
n 0 1 2 3 4

T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

→ 26



How many calls to f()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
f();

}

T (0) = 1

T (n) = 1 + ∑n→1
i=0 T (i)

n 0 1 2 3 4
T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

→ 26



How many calls to f()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
f();

}

T (0) = 1
T (n) = 1 + ∑n→1

i=0 T (i)

n 0 1 2 3 4
T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

→ 26



How many calls to f()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
f();

}

T (0) = 1
T (n) = 1 + ∑n→1

i=0 T (i)
n 0 1 2 3 4

T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

→ 26



How many calls to f()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
f();

}

T (0) = 1
T (n) = 1 + ∑n→1

i=0 T (i)
n 0 1 2 3 4

T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

→ 26



Induction

Hypothesis: T (n) = 2n.
Induction step:

T (n) = 1 +
n→1∑

i=0
2i

= 1 + 2n
⇔ 1 = 2n

→ 27



Induction

Hypothesis: T (n) = 2n.
Induction step:

T (n) = 1 +
n→1∑

i=0
2i

= 1 + 2n
⇔ 1 = 2n

→ 27



How many calls to f()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
f();

}

You can also see it directly:

T (n) = 1 +
n→1∑

i=0
T (i)

↖ T (n ⇔ 1) = 1 +
n→2∑

i=0
T (i)

↖ T (n) = T (n ⇔ 1) + T (n ⇔ 1) = 2T (n ⇔ 1)
→ 28



7. Solving Simple Recurrence Equations

→ 29



Recurrence Equation

T (n) =




2T (n

2 ) + n
2 + 1, n > 1

3 n = 1

Specify a closed (non-recursive), simple formula for T (n) and prove it using
mathematical induction. Assume that n is a power of 2.

→ 30



Recurrence Equation

T (2k) = 2T (2k→1) + 2k/2 + 1
= 2(2(T (2k→2) + 2k→1/2 + 1) + 2k/2 + 1 = ...

= 2kT (2k→k) + 2k/2 + ... + 2k/2
︸ ︷︷ ︸

k

+1 + 2 + ... + 2k→1

= 3n + n

2 log2 n + n ⇔ 1

↖ Assumption T (n) = 4n + n
2 log2 n ⇔ 1

→ 31



Induction

1. Hypothesis T (n) = f(n) := 4n + n
2 log2 n ⇔ 1

2. Base Case T (1) = 3 = f(1) = 4 ⇔ 1.

3. Step T (n) = f(n) ⇔↑ T (2 · n) = f(2n) (n = 2k for some k ↔ ):

T (2n) = 2T (n) + n + 1
i.h.= 2(4n + n

2 log2 n ⇔ 1) + n + 1

= 8n + n log2 n ⇔ 2 + n + 1
= 8n + n log2 n + n log2 2 ⇔ 1
= 8n + n log2 2n ⇔ 1
= f(2n).

→ 32



Master Method

T (n) =




aT (n

b ) + f(n) n > 1
f(1) n = 1

(a, b ↔
+)

1. f(n) = O(nlogb a→ε) for some constant ω > 0 =↖ T (n) ↔ !(nlogb a)

2. f(n) = !(nlogb a) =↖ T (n) ↔ !(nlogb a log n)

3. f(n) = ”(nlogb a+ε) for some constant ω > 0, and if af(n
b ) ↗ cf(n) for some

constant c < 1 and all su#ciently large n =↖ T (n) ↔ !(f(n))

→ 33



Examples

Maximum Subarray / Mergesort

T (n) = 2T (n/2) + !(n)

a = 2, b = 2, f(n) = cn = cn1 = cnlog2 2 [2]=↖ T (n) = !(n log n)

→ 34



Examples

Maximum Subarray / Mergesort

T (n) = 2T (n/2) + !(n)

a = 2, b = 2, f(n) = cn = cn1 = cnlog2 2 [2]=↖ T (n) = !(n log n)

→ 34



Examples

Naive Matrix Multiplication Divide & Conquer2

T (n) = 8T (n/2) + !(n2)

a = 8, b = 2, f(n) = cn2
↔ O(nlog2 8→1) [1]=↖ T (n) ↔ !(n3)

2Treated in the course later on
→ 35



Examples

Naive Matrix Multiplication Divide & Conquer2

T (n) = 8T (n/2) + !(n2)

a = 8, b = 2, f(n) = cn2
↔ O(nlog2 8→1) [1]=↖ T (n) ↔ !(n3)

2Treated in the course later on
→ 35



Examples

Strassens Matrix Multiplication Divide & Conquer3

T (n) = 7T (n/2) + !(n2)

a = 7, b = 2, f(n) = cn2
↔ O(nlog2 7→ε) [1]=↖ T (n) ↔ !(nlog2 7) ⇒ !(n2.8)

3Treated in the course later on
→ 36



Examples

Strassens Matrix Multiplication Divide & Conquer3

T (n) = 7T (n/2) + !(n2)

a = 7, b = 2, f(n) = cn2
↔ O(nlog2 7→ε) [1]=↖ T (n) ↔ !(nlog2 7) ⇒ !(n2.8)

3Treated in the course later on
→ 36



Examples

T (n) = 2T (n/4) + !(n)

a = 2, b = 4, f(n) = cn ↔ ”(nlog4 2+0.5), 2f(n/4) = cn
2 ↗

c
2n1 [3]=↖ T (n) ↔ !(n)

→ 37



Examples

T (n) = 2T (n/4) + !(n)

a = 2, b = 4, f(n) = cn ↔ ”(nlog4 2+0.5), 2f(n/4) = cn
2 ↗

c
2n1 [3]=↖ T (n) ↔ !(n)

→ 37



Examples

T (n) = 2T (n/4) + !(n2)

a = 2, b = 4, f(n) = cn2
↔ ”(nlog4 2+1.5), 2f(n/4) = n2

8 ↗
1
8n2 [3]=↖

T (n) ↔ !(n2)

→ 38



Examples

T (n) = 2T (n/4) + !(n2)

a = 2, b = 4, f(n) = cn2
↔ ”(nlog4 2+1.5), 2f(n/4) = n2

8 ↗
1
8n2 [3]=↖

T (n) ↔ !(n2)

→ 38



What I had on my Cheatsheet

Equation must be convertible into form

T (n) = a · T
(

n

b

)
+ f(n), (a ≃ 1, b > 1)

where:

a : Number of Subproblems
1/b : Division Quotient
f(n) : Div- and Summing Costs
Then we can proceed:
1. Convert the Recurrence
Equation into the form above

2. Calculate K := logb a

3. Make case distinction (ε > 0):

f ↔






O

(
nK→ϑ

)
=↖ T (n) ↔ !

(
nK

)

!
(
nK

)
=↖ T (n) ↔ !

(
nK log(n)

)

”
(
nK+ϑ

)
↙ af(n

b ) ↗ cf(n), 0 < c < 1
=↖ T (n) ↔ !(f(n))

→ 39



What I had on my Cheatsheet
Equation must be convertible into form

T (n) = a · T
(

n

b

)
+ f(n), (a ≃ 1, b > 1)

where:

a : Number of Subproblems
1/b : Division Quotient
f(n) : Div- and Summing Costs
Then we can proceed:
1. Convert the Recurrence
Equation into the form above

2. Calculate K := logb a

3. Make case distinction (ε > 0):

f ↔






O

(
nK→ϑ

)
=↖ T (n) ↔ !

(
nK

)

!
(
nK

)
=↖ T (n) ↔ !

(
nK log(n)

)

”
(
nK+ϑ

)
↙ af(n

b ) ↗ cf(n), 0 < c < 1
=↖ T (n) ↔ !(f(n))

→ 39



What I had on my Cheatsheet
Equation must be convertible into form

T (n) = a · T
(

n

b

)
+ f(n), (a ≃ 1, b > 1)

where:

a : Number of Subproblems
1/b : Division Quotient
f(n) : Div- and Summing Costs

Then we can proceed:
1. Convert the Recurrence
Equation into the form above

2. Calculate K := logb a

3. Make case distinction (ε > 0):

f ↔






O

(
nK→ϑ

)
=↖ T (n) ↔ !

(
nK

)

!
(
nK

)
=↖ T (n) ↔ !

(
nK log(n)

)

”
(
nK+ϑ

)
↙ af(n

b ) ↗ cf(n), 0 < c < 1
=↖ T (n) ↔ !(f(n))

→ 39



What I had on my Cheatsheet
Equation must be convertible into form

T (n) = a · T
(

n

b

)
+ f(n), (a ≃ 1, b > 1)

where:

a : Number of Subproblems
1/b : Division Quotient
f(n) : Div- and Summing Costs
Then we can proceed:
1. Convert the Recurrence
Equation into the form above

2. Calculate K := logb a

3. Make case distinction (ε > 0):

f ↔






O

(
nK→ϑ

)
=↖ T (n) ↔ !

(
nK

)

!
(
nK

)
=↖ T (n) ↔ !

(
nK log(n)

)

”
(
nK+ϑ

)
↙ af(n

b ) ↗ cf(n), 0 < c < 1
=↖ T (n) ↔ !(f(n))

→ 39



What I had on my Cheatsheet
Equation must be convertible into form

T (n) = a · T
(

n

b

)
+ f(n), (a ≃ 1, b > 1)

where:

a : Number of Subproblems
1/b : Division Quotient
f(n) : Div- and Summing Costs
Then we can proceed:
1. Convert the Recurrence
Equation into the form above

2. Calculate K := logb a

3. Make case distinction (ε > 0):

f ↔






O

(
nK→ϑ

)
=↖ T (n) ↔ !

(
nK

)

!
(
nK

)
=↖ T (n) ↔ !

(
nK log(n)

)

”
(
nK+ϑ

)
↙ af(n

b ) ↗ cf(n), 0 < c < 1
=↖ T (n) ↔ !(f(n))

→ 39



What I had on my Cheatsheet
Equation must be convertible into form

T (n) = a · T
(

n

b

)
+ f(n), (a → 1, b > 1)

where:

a : Number of Subproblems
1/b : Division Quotient
f(n) : Div- and Summing Costs
Then we can proceed:
1. Convert the Recurrence
Equation into the form above

2. Calculate K := logb a

3. Make case distinction (ω > 0):

f ↑






O

(
nK→ω

)
=↓ T (n) ↑ !

(
nK

)

!
(
nK

)
=↓ T (n) ↑ !

(
nK log(n)

)

”
(
nK+ω

)
↔ af(n

b ) ↗ cf(n), 0 < c < 1
=↓ T (n) ↑ !(f(n))

↘ 39



What I had on my Cheatsheet
Equation must be convertible into form

T (n) = a · T
(

n

b

)
+ f(n), (a → 1, b > 1)

where:

a : Number of Subproblems
1/b : Division Quotient
f(n) : Div- and Summing Costs
Then we can proceed:
1. Convert the Recurrence
Equation into the form above

2. Calculate K := logb a

3. Make case distinction (ω > 0):

f ↑






O

(
nK→ω

)
=↓ T (n) ↑ !

(
nK

)

!
(
nK

)
=↓ T (n) ↑ !

(
nK log(n)

)

”
(
nK+ω

)
↔ af(n

b ) ↗ cf(n), 0 < c < 1
=↓ T (n) ↑ !(f(n))

↘ 39



Personal Approach to "Solving RecEqs"

"Plug and Chuck"-Approach
1. Expand few times
2. Notice patterns (careful with multiplications on T (n))
3. Write down explicitly
4. Formulate explicit formula f(n)
5. Prove via induction

↘ 40



Personal Approach to "Calls of f()"

1. Loops: just multiply outer runtime with inner to get whole runtime
(works recursively)

2. Just brute-force calculate g(0), g(1), g(2), g(3), . . . and try to identify
trends

3. If too hard: consider !(2n)
4. If necessary/possible, simply set up and solve RecEqs via Master
Method

5. If asked provide proof (by induction)

↘ 41



8. Sorting Algorithms

↘ 42



Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

5 4 1 3 2
1 4 5 3 2
1 2 5 3 4
1 2 3 5 4
1 2 3 4 5

selection

5 4 1 3 2
4 1 3 2 5
1 3 2 4 5
1 2 3 4 5

bubblesort

5 4 1 3 2
4 5 1 3 2
1 4 5 3 2
1 3 4 5 2
1 2 3 4 5

insertion

↘ 43



Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

5 4 1 3 2
1 4 5 3 2
1 2 5 3 4
1 2 3 5 4
1 2 3 4 5

selection

5 4 1 3 2
4 1 3 2 5
1 3 2 4 5
1 2 3 4 5

bubblesort

5 4 1 3 2
4 5 1 3 2
1 4 5 3 2
1 3 4 5 2
1 2 3 4 5

insertion

↘ 43



Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

5 4 1 3 2
1 4 5 3 2
1 2 5 3 4
1 2 3 5 4
1 2 3 4 5

selection

5 4 1 3 2
4 1 3 2 5
1 3 2 4 5
1 2 3 4 5

bubblesort

5 4 1 3 2
4 5 1 3 2
1 4 5 3 2
1 3 4 5 2
1 2 3 4 5

insertion

↘ 43



Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

5 4 1 3 2
1 4 5 3 2
1 2 5 3 4
1 2 3 5 4
1 2 3 4 5

selection

5 4 1 3 2
4 1 3 2 5
1 3 2 4 5
1 2 3 4 5

bubblesort

5 4 1 3 2
4 5 1 3 2
1 4 5 3 2
1 3 4 5 2
1 2 3 4 5

insertion

↘ 43



Quiz

Execute two further iterations of the algorithm Quicksort on the following array.
The first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 10 15 13

2 7 5 6 3 8 9 10 15 13
2 3 5 6 7 8 9 10 15 13

↘ 44



Quiz

Execute two further iterations of the algorithm Quicksort on the following array.
The first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 10 15 13
2 7 5 6 3

8 9 10 15 13
2 3 5 6 7 8 9 10 15 13

↘ 44



Quiz

Execute two further iterations of the algorithm Quicksort on the following array.
The first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 10 15 13
2 7 5 6 3 8

9 10 15 13
2 3 5 6 7 8 9 10 15 13

↘ 44



Quiz

Execute two further iterations of the algorithm Quicksort on the following array.
The first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 10 15 13
2 7 5 6 3 8 9 10 15 13

2 3 5 6 7 8 9 10 15 13

↘ 44



Quiz

Execute two further iterations of the algorithm Quicksort on the following array.
The first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 10 15 13
2 7 5 6 3 8 9 10 15 13
2 3 5 6 7

8 9 10 15 13

↘ 44



Quiz

Execute two further iterations of the algorithm Quicksort on the following array.
The first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 10 15 13
2 7 5 6 3 8 9 10 15 13
2 3 5 6 7 8

9 10 15 13

↘ 44



Quiz

Execute two further iterations of the algorithm Quicksort on the following array.
The first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 10 15 13
2 7 5 6 3 8 9 10 15 13
2 3 5 6 7 8 9

10 15 13

↘ 44



Quiz

Execute two further iterations of the algorithm Quicksort on the following array.
The first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 10 15 13
2 7 5 6 3 8 9 10 15 13
2 3 5 6 7 8 9 10 15 13

↘ 44



Stable and in-situ sorting algorithms

Stable sorting algorithms don’t change the relative position of two equal
elements.

5 2 6 6 8 4
not stable

2 4 5 6 6 8

5 2 6 6 8 4
stable

2 4 5 6 6 8

In-situ algorithms require only a constant amount of additional memory.
Discussion: Which of the sorting algorithms are stable? Which are in-situ?
(How) can we make them stable / in-situ?

↘ 45



Stable and in-situ sorting algorithms

Stable sorting algorithms don’t change the relative position of two equal
elements.

5 2 6 6 8 4
not stable

2 4 5 6 6 8

5 2 6 6 8 4
stable

2 4 5 6 6 8

In-situ algorithms require only a constant amount of additional memory.
Discussion: Which of the sorting algorithms are stable? Which are in-situ?
(How) can we make them stable / in-situ?

↘ 45



Stable and in-situ sorting algorithms

Stable sorting algorithms don’t change the relative position of two equal
elements.

5 2 6 6 8 4
not stable

2 4 5 6 6 8

5 2 6 6 8 4
stable

2 4 5 6 6 8

In-situ algorithms require only a constant amount of additional memory.
Discussion: Which of the sorting algorithms are stable? Which are in-situ?
(How) can we make them stable / in-situ?

↘ 45



9. In-Class Code-Examples

Implement (Binary) Search from Scratch
≃⇐ CodeExpert
Use the result to implement binary insertion sort.
≃⇐ CodeExpert

↘ 46



10. Past Exam Questions

↘ 47



Past Exam 2020: Task 2b)

↘ 48



Past Exam 2020: Task 2b) — Solution

↘ 49



Past Exam 2020: Task 2e)

↘ 50



Past Exam 2020: Task 2e) — Solution

if (n > 1){

g(n/4); g(n/4);

while(n > 1){
f();
n /= 4;

}

// } the other brace was closed
// in the exercise description

↘ 51



11. Tips for code expert

↘ 52



Tips for code expert Exercise 2

Task "Prefix Sum in 2D"

Study the Prefix Sum in 1D4 well and go from there
Make sketches!

Task "Sliding Window"
Sketches!

Task "Proofs by Induction"
The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

4There’s an implementation in the code examples on code expert
↘ 53



Tips for code expert Exercise 2

Task "Prefix Sum in 2D"
Study the Prefix Sum in 1D4 well and go from there
Make sketches!

Task "Sliding Window"
Sketches!

Task "Proofs by Induction"
The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

4There’s an implementation in the code examples on code expert
↘ 53



Tips for code expert Exercise 2

Task "Prefix Sum in 2D"
Study the Prefix Sum in 1D4 well and go from there
Make sketches!

Task "Sliding Window"

Sketches!
Task "Proofs by Induction"

The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

4There’s an implementation in the code examples on code expert
↘ 53



Tips for code expert Exercise 2

Task "Prefix Sum in 2D"
Study the Prefix Sum in 1D4 well and go from there
Make sketches!

Task "Sliding Window"
Sketches!

Task "Proofs by Induction"
The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

4There’s an implementation in the code examples on code expert
↘ 53



Tips for code expert Exercise 2

Task "Prefix Sum in 2D"
Study the Prefix Sum in 1D4 well and go from there
Make sketches!

Task "Sliding Window"
Sketches!

Task "Proofs by Induction"

The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

4There’s an implementation in the code examples on code expert
↘ 53



Tips for code expert Exercise 2

Task "Prefix Sum in 2D"
Study the Prefix Sum in 1D4 well and go from there
Make sketches!

Task "Sliding Window"
Sketches!

Task "Proofs by Induction"
The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

4There’s an implementation in the code examples on code expert
↘ 53



Tips for code expert Exercise 2

Task "Karatsuba Ofman"

Translate "3.3.2 Divide And Conquer" from the script into code
Main struggle: generalizing to non-"power of 2" cases
Study the definition of .part(lo, hi) method
Make sure to have both "subnumbers" be of equal length
There might be issues with a silly o!-by-one error due to how n/2 gets
calculated — be aware of that
Naming variable sensibly might prevent you from making silly mistakes

↘ 54



Tips for code expert Exercise 2

Task "Karatsuba Ofman"
Translate "3.3.2 Divide And Conquer" from the script into code
Main struggle: generalizing to non-"power of 2" cases
Study the definition of .part(lo, hi) method
Make sure to have both "subnumbers" be of equal length
There might be issues with a silly o!-by-one error due to how n/2 gets
calculated — be aware of that
Naming variable sensibly might prevent you from making silly mistakes

↘ 54



12. Outro

↘ 55



General Questions?

↘ 56



TRADE OFFER

↘ 57



TRADE OFFER

↘ 57



See you next time!

Have a nice week!

↘ 58


