

Datastructures and Algorithms Amortized Analysis, Code Example "Dynamically Sized Array"

Adel Gavranović – ETH Zürich – 2025

Overview

Learning Objectives Entry Quiz Repetition theory Amortized Analysis Code-Example: Dynamically Sized Array Tips for **code expert** Past Exam Questions

n.ethz.ch/~agavranovic

1. Follow-up

Slide 15 " $\log(n!) \in \Theta(n \log n)$ "

Slide 15 " $\log(n!) \in \Theta(n \log n)$ "

- I double checked and it seems to be true
- Proof via Stirling's approximation of *n*!

Slide 15 " $\log(n!) \in \Theta(n \log n)$ "

- I double checked and it seems to be true
- Proof via Stirling's approximation of *n*!

Slide 19 "Analyse the running time of (recursive) Functions"

Slide 15 " $\log(n!) \in \Theta(n \log n)$ "

- I double checked and it seems to be true
- Proof via Stirling's approximation of *n*!

Slide 19 "Analyse the running time of (recursive) Functions"

■ If we have enough time left, we might revisit this

Slide 15 " $\log(n!) \in \Theta(n \log n)$ "

- I double checked and it seems to be true
- Proof via Stirling's approximation of *n*!

Slide 19 "Analyse the running time of (recursive) Functions"

■ If we have enough time left, we might revisit this

Slide 39 "Master Method"

Slide 15 " $\log(n!) \in \Theta(n \log n)$ "

- I double checked and it seems to be true
- Proof via Stirling's approximation of *n*!

Slide 19 "Analyse the running time of (recursive) Functions"

■ If we have enough time left, we might revisit this

Slide 39 "Master Method"

■ If we have enough time left, we might revisit this too

Slide 15 " $\log(n!) \in \Theta(n \log n)$ "

- I double checked and it seems to be true
- Proof via Stirling's approximation of *n*!

Slide 19 "Analyse the running time of (recursive) Functions"

■ If we have enough time left, we might revisit this

Slide 39 "Master Method"

If we have enough time left, we might revisit this too

Slide 42 "Sorting Algorithms"

Slide 15 " $\log(n!) \in \Theta(n \log n)$ "

- I double checked and it seems to be true
- Proof via Stirling's approximation of *n*!

Slide 19 "Analyse the running time of (recursive) Functions"

■ If we have enough time left, we might revisit this

Slide 39 "Master Method"

■ If we have enough time left, we might revisit this too

Slide 42 "Sorting Algorithms"

Who did have a look at it?

Slide 57 "Trade Offer regarding Larger"

Slide 15 " $\log(n!) \in \Theta(n \log n)$ "

- I double checked and it seems to be true
- Proof via Stirling's approximation of *n*!

Slide 19 "Analyse the running time of (recursive) Functions"

■ If we have enough time left, we might revisit this

Slide 39 "Master Method"

■ If we have enough time left, we might revisit this too

Slide 42 "Sorting Algorithms"

Who did have a look at it?

Slide 57 "Trade Offer regarding Larger"

Becuase we didn't get to everything last time, I deem it would be better to postpone this

2. Feedback regarding code expert

General things regarding **code** expert

General things regarding code expert

- Bonus open since Monday(?)
- XP needed to unlock it
- I'm correcting as quickly as I can, so you all can get started on it

Any questions regarding **code** expert on your part?

3. Learning Objectives

□ Understand the basics of the three Amortized Analysis methods

- □ Aggregate Analysis
- Account Method
- Potential Method

□ Be prepared for Double Ended Queue exercise on **code** expert

4. Summary

Getting on the same page

What happened in the lectures since last time?

5. Entry Quiz

(1) In order to have a worst case runtime of $\mathcal{O}(n\log n)$, we use

- BubbleSort
- Selection Sort
- Mergesort
- Quicksort

(1) In order to have a worst case runtime of $\mathcal{O}(n\log n)$, we use

- BubbleSort
- Selection Sort
- Mergesort 🙂
- Quicksort

(2) We use Quickselect with random pivot choice. Then we have

- a worst case running time of $\mathcal{O}(n \log n)$
- \blacksquare a worst case running time of $\mathcal{O}(n)$
- an expected running time of $\mathcal{O}(\log n)$
- \blacksquare an expected running time of $\mathcal{O}(n)$

(2) We use Quickselect with random pivot choice. Then we have

- a worst case running time of $\mathcal{O}(n \log n)$
- \blacksquare a worst case running time of $\mathcal{O}(n)$
- an expected running time of $\mathcal{O}(\log n)$
- an expected running time of $\mathcal{O}(n)$ \bigcirc

6. Repetition theory6.1. Amortized Analysis

Amortized Analysis

Three Methods

Amortized Analysis

Three Methods

- Aggregate analysis
- Account Method
- Potential Method

Supports operations Insert and Find.

Supports operations Insert and Find. Idea:

• Collection of arrays A_i with Length 2^i

Supports operations Insert and Find. Idea:

- Collection of arrays A_i with Length 2^i
- Every array is either entirely empty or entirely full and stores items in a sorted order

Supports operations Insert and Find. Idea:

- Collection of arrays A_i with Length 2^i
- Every array is either entirely empty or entirely full and stores items in a sorted order
- Between the arrays there is no further relationship

Supports operations Insert and Find. Idea:

- Collection of arrays A_i with Length 2^i
- Every array is either entirely empty or entirely full and stores items in a sorted order
- Between the arrays there is no further relationship

Data $\{1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99\}$, n = 11

$$\begin{array}{lll} A_0: & [50] \\ A_1: & [8, 99] \\ A_2: & \emptyset \\ A_3: & [1, 10, 18, 20, 24, 36, 48, 75] \end{array}$$

We use 0-indexing, such that for the lengths $|A_i| = 2^i$.

For any $n \in \mathbb{N}$, we can store exactly n elements in our multi set, without partially-filled arrays. Intuition: binary representation of n.

#elements in multi-set =
$$|A_k|$$
 + $|A_{k-1}|$ + ... + $|A_0|$
= $b_k 2^k$ + $b_{k-1} 2^{k-1}$ + ... + $b_0 2^0$
= $(b_k$ b_{k-1} ... $b_0)_2$

Where $b_i = 0$ if $|A_i| = 0$, and 1 if $|A_i| = 2^i$.

Data $\{1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99\}$, n = 11

Algorithm Find:

Data $\{1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99\}$, n = 11

Algorithm Find: Perform a binary search on each array Worst-case Runtime:

Data $\{1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99\}$, n = 11

Algorithm Find: Perform a binary search on each array Worst-case Runtime: $\Theta(\log^2 n)$,

Data $\{1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99\}$, n = 11

Algorithm Find: Perform a binary search on each array Worst-case Runtime: $\Theta(\log^2 n)$,

$$\log 1 + \log 2 + \log 4 + \dots + \log 2^k = \sum_{i=0}^k \log_2 2^i = \frac{k \cdot (k+1)}{2} \in \Theta(\log^2 n).$$

 $(k = \lfloor \log_2 n \rfloor)$

Algorithm Insert(x):

Algorithm Insert(x):

• New array $A_0' \leftarrow [x], i \leftarrow 0$

Algorithm Insert(x):

- New array $A'_0 \leftarrow [x]$, $i \leftarrow 0$
- while $A_i \neq \emptyset$, set $A'_{i+1} = \mathsf{Merge}(A_i, A'_i)$, $A_i \leftarrow \emptyset$, $i \leftarrow i+1$

Algorithm Insert(x):

- New array $A'_0 \leftarrow [x]$, $i \leftarrow 0$
- while $A_i \neq \emptyset$, set $A'_{i+1} = \mathsf{Merge}(A_i, A'_i)$, $A_i \leftarrow \emptyset$, $i \leftarrow i+1$
- $\blacksquare \text{ Set } A_i \leftarrow A_i'$

Algorithm Insert(x):

- New array $A_0' \leftarrow [x]$, $i \leftarrow 0$
- while $A_i \neq \emptyset$, set $A'_{i+1} = \mathsf{Merge}(A_i, A'_i)$, $A_i \leftarrow \emptyset$, $i \leftarrow i+1$
- $\blacksquare \text{ Set } A_i \leftarrow A_i'$

Insert(11)

Pre-insert

 $\begin{array}{ll} A_0: & [50] \\ A_1: & [8,99] \\ A_2: & \emptyset \\ A_3: & [1,10,18,\ldots,75] \end{array}$

Algorithm Insert(x):

- New array $A'_0 \leftarrow [x], i \leftarrow 0$
- while $A_i \neq \emptyset$, set $A'_{i+1} = \mathsf{Merge}(A_i, A'_i)$, $A_i \leftarrow \emptyset$, $i \leftarrow i+1$
- Set $A_i \leftarrow A'_i$

Insert(11)		
	Pre-insert	Temporary
A_2 :	$egin{array}{l} [50] \ [8,99] \ \emptyset \ [1,10,18,\ldots,75] \end{array}$	

Algorithm Insert(x):

- New array $A'_0 \leftarrow [x], i \leftarrow 0$
- while $A_i \neq \emptyset$, set $A'_{i+1} = \mathsf{Merge}(A_i, A'_i)$, $A_i \leftarrow \emptyset$, $i \leftarrow i+1$

Insert(11)		
	Pre-insert	Temporary
A_2 :	$egin{array}{l} [50] \ [8,99] \ \emptyset \ [1,10,18,\ldots,75] \end{array}$	A'_0 : [11]

Algorithm Insert(x):

- New array $A'_0 \leftarrow [x], i \leftarrow 0$
- while $A_i \neq \emptyset$, set $A'_{i+1} = \mathsf{Merge}(A_i, A'_i)$, $A_i \leftarrow \emptyset$, $i \leftarrow i+1$

Insert(11)		
	Pre-insert	Temporary
A_1 : A_2 :	$egin{array}{c} [50] \ [8,99] \ \emptyset \ [1,10,18,\ldots,75] \end{array}$	A'_{0} : [11] A'_{1} : [11, 50]

Algorithm Insert(x):

- New array $A'_0 \leftarrow [x], i \leftarrow 0$
- while $A_i \neq \emptyset$, set $A'_{i+1} = \mathsf{Merge}(A_i, A'_i)$, $A_i \leftarrow \emptyset$, $i \leftarrow i+1$

Insert(11)		
	Pre-insert	Temporary
A_2 :	[8, 99]	$\begin{array}{ll} A_0': & [11] \\ A_1': & [11, 50] \\ A_2': & [8, 11, 50, 99] \end{array}$

Algorithm Insert(x):

- New array $A'_0 \leftarrow [x], i \leftarrow 0$
- $\blacksquare \text{ while } A_i \neq \emptyset \text{, set } A'_{i+1} = \mathsf{Merge}(A_i, A'_i) \text{, } A_i \leftarrow \emptyset \text{, } i \leftarrow i+1$

Insert(11)			
	Pre-insert	Temporary	Post-insert
$\begin{array}{c} A_1:\\ A_2: \end{array}$	$ \begin{matrix} [50] \\ [8,99] \\ \emptyset \\ [1,10,18,\ldots,75] \end{matrix} $	$\begin{array}{ll} A_0': & [11] \\ A_1': & [11, 50] \\ A_2': & [8, 11, 50, 99] \end{array}$	$\implies \begin{array}{ccc} A_{0} : & \emptyset \\ A_{1} : & \emptyset \\ A_{2} : & [8, 11, 50, 99] \\ A_{3} : & [1, 10, 18, \dots, 75] \end{array}$

Costs insert

In the following example: $n = 2^k$, $k = \log_2 n$

In the following example: $n = 2^k$, $k = \log_2 n$

Assumption: creating new array A'_i with length 2^i (and, for i > 0 subsequent merge of A'_{i-1} and A_{i-1}) has costs $\Theta(2^i)$

In the following example: $n = 2^k$, $k = \log_2 n$

Assumption: creating new array A'_i with length 2^i (and, for i > 0 subsequent merge of A'_{i-1} and A_{i-1}) has costs $\Theta(2^i)$

In the worst case, inserting an element into the data structure provides $\log_2 n$ such operations.

In the following example: $n = 2^k$, $k = \log_2 n$

Assumption: creating new array A'_i with length 2^i (and, for i > 0 subsequent merge of A'_{i-1} and A_{i-1}) has costs $\Theta(2^i)$

In the worst case, inserting an element into the data structure provides $\log_2 n$ such operations.

 \Rightarrow Worst-case Costs Insert:

$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1 \in \Theta(n).$$

Level	Costs	Example Array
0	1	[*]
1	2	[*,*]
2	4	[*, *, *, *]
3	8	Ø
4	16	[*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*]

Level	Costs	Example Array
0	1	[*]
1	2	[*,*]
2	4	[*, *, *, *]
3	8	Ø
4	16	[*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*]

Observation: Starting with an empty container, an insertion sequence reaches level 0 each time, level 1 (with costs 2) every second time, level 2 (with costs 4) every fourth time, etc.

Level	Costs	Example Array
0	1	[*]
1	2	[*,*]
2	4	[*, *, *, *]
3	8	Ø
4	16	[st,st,st,st,st,st,st,st,st,st,

Observation: Starting with an empty container, an insertion sequence reaches level 0 each time, level 1 (with costs 2) every second time, level 2 (with costs 4) every fourth time, etc.

Total costs:
$$1 \cdot \frac{n}{1} + 2 \cdot \frac{n}{2} + 4 \cdot \frac{n}{4} + \dots + 2^k \cdot \frac{n}{2^k} =$$

Level	Costs	Example Array
0	1	[*]
1	2	[*,*]
2	4	[*, *, *, *]
3	8	Ø
4	16	[*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*]

Observation: Starting with an empty container, an insertion sequence reaches level 0 each time, level 1 (with costs 2) every second time, level 2 (with costs 4) every fourth time, etc.

- Total costs: $1 \cdot \frac{n}{1} + 2 \cdot \frac{n}{2} + 4 \cdot \frac{n}{4} + \dots + 2^k \cdot \frac{n}{2^k} = (k+1)n$ This is in $\Theta(n \log n)$ because $k = \log_2 n$.
- Amortized cost per operation: $\Theta((n \log n)/n) = \Theta(\log n)$.

Accounting method

Ideas?

Every element i $(1 \le i \le n)$ pays $a_i = \log_2 n$ coins when it is inserted into the data structure.

Accounting method

- Every element i $(1 \le i \le n)$ pays $a_i = \log_2 n$ coins when it is inserted into the data structure.
- The element pays the allocation of the first array and every subsequent merge-step that can occur until the element has reached array A_{k+1} (k = ⌊log₂ n⌋).

- Every element i $(1 \le i \le n)$ pays $a_i = \log_2 n$ coins when it is inserted into the data structure.
- The element pays the allocation of the first array and every subsequent merge-step that can occur until the element has reached array A_{k+1} (k = ⌊log₂ n⌋).
- The account provides enough credit to pay for all Merge operations of the n elements.

- Every element i $(1 \le i \le n)$ pays $a_i = \log_2 n$ coins when it is inserted into the data structure.
- The element pays the allocation of the first array and every subsequent merge-step that can occur until the element has reached array A_{k+1} (k = ⌊log₂ n⌋).
- The account provides enough credit to pay for all Merge operations of the n elements.
- \Rightarrow **Amortized costs** for insertion $\mathcal{O}(\log n)$

Ideas?

We know from the accounting method that **each element on the way to higher levels requires** $\log n$ **coins**, i.e. that an element on level *i* still needs to posess k - i coins.

We know from the accounting method that **each element on the way to higher levels requires** $\log n$ **coins**, i.e. that an element on level *i* still needs to posess k - i coins. We use the **potential**

We know from the accounting method that **each element on the way to higher levels requires** $\log n$ **coins**, i.e. that an element on level *i* still needs to posess k - i coins. We use the **potential**

$$\Phi_j = \sum_{0 \le i \le k: A_i \ne \emptyset} (k-i) \cdot 2^i$$

For the **change of the potential** $\Phi_j - \Phi_{j-1}$ we only have to consider the lower l levels that are occupied at time point j - 1 (in analogy to the binary counter). Let l be the smallest index such that array A_l is empty.

For the **change of the potential** $\Phi_j - \Phi_{j-1}$ we only have to consider the lower l levels that are occupied at time point j - 1 (in analogy to the binary counter). Let l be the smallest index such that array A_l is empty.

After merging arrays $A_0 \dots A_{l-1}$, array A_l is full and arrays $A_i (0 \le i < l)$ are now empty. Therefore:

For the **change of the potential** $\Phi_j - \Phi_{j-1}$ we only have to consider the lower l levels that are occupied at time point j - 1 (in analogy to the binary counter). Let l be the smallest index such that array A_l is empty.

After merging arrays $A_0 \dots A_{l-1}$, array A_l is full and arrays $A_i (0 \le i < l)$ are now empty. Therefore:

$$\Phi_j - \Phi_{j-1} = (k-l) \cdot 2^l - \sum_{i=0}^{l-1} (k-i) \cdot 2^i$$

For the **change of the potential** $\Phi_j - \Phi_{j-1}$ we only have to consider the lower l levels that are occupied at time point j - 1 (in analogy to the binary counter). Let l be the smallest index such that array A_l is empty.

After merging arrays $A_0 \dots A_{l-1}$, array A_l is full and arrays $A_i (0 \le i < l)$ are now empty. Therefore:

$$\Phi_j - \Phi_{j-1} = (k-l) \cdot 2^l - \sum_{i=0}^{l-1} (k-i) \cdot 2^i$$

Real costs:

$$t_j = \sum_{i=0}^{l} 2^i = 2^{l+1} - 1$$

$$\Phi_j - \Phi_{j-1} = (k-l) \cdot 2^l - \sum_{i=0}^{l-1} (k-i) \cdot 2^i$$

$$\Phi_j - \Phi_{j-1} = (k-l) \cdot 2^l - \sum_{i=0}^{l-1} (k-i) \cdot 2^i$$
$$= (k-l) \cdot 2^l - k \cdot (2^l-1) + \sum_{i=0}^{l-1} i \cdot 2^i$$

Potential method

$$\Phi_j - \Phi_{j-1} = (k-l) \cdot 2^l - \sum_{i=0}^{l-1} (k-i) \cdot 2^i$$
$$= (k-l) \cdot 2^l - k \cdot (2^l-1) + \sum_{i=0}^{l-1} i \cdot 2^i$$
$$= (k-l) \cdot 2^l - k \cdot (2^l-1) + l \cdot 2^l - 2^{l+1} + 2$$

Potential method

$$\Phi_j - \Phi_{j-1} = (k-l) \cdot 2^l - \sum_{i=0}^{l-1} (k-i) \cdot 2^i$$
$$= (k-l) \cdot 2^l - k \cdot (2^l-1) + \sum_{i=0}^{l-1} i \cdot 2^i$$
$$= (k-l) \cdot 2^l - k \cdot (2^l-1) + l \cdot 2^l - 2^{l+1} + 2$$
$$= k - 2^{l+1} + 2$$

Potential method

$$\Phi_j - \Phi_{j-1} = (k-l) \cdot 2^l - \sum_{i=0}^{l-1} (k-i) \cdot 2^i$$
$$= (k-l) \cdot 2^l - k \cdot (2^l-1) + \sum_{i=0}^{l-1} i \cdot 2^i$$
$$= (k-l) \cdot 2^l - k \cdot (2^l-1) + l \cdot 2^l - 2^{l+1} + 2$$
$$= k - 2^{l+1} + 2$$

$$\implies \Phi_j - \Phi_{j-1} + t_j = k - 2^{l+1} + 2 + 2^{l+1} - 1 = k + 1 \in \Theta(\log n)$$

See CLRS Chapter 16.

 $\sum\overline{i\cdot\lambda}^i$

 $\sum\overline{i\cdot\lambda}^i$

$$\lambda \cdot \sum_{i=0}^n i \cdot \lambda^i - \sum_{i=0}^n i \cdot \lambda^i = \sum_{i=0}^n i \cdot \lambda^{i+1} - \sum_{i=0}^n i \cdot \lambda^i = \sum_{i=1}^{n+1} (i-1) \cdot \lambda^i - \sum_{i=0}^n i \cdot \lambda^i$$

 $\sum\overline{i\cdot\lambda}^i$

$$\begin{aligned} \lambda \cdot \sum_{i=0}^{n} i \cdot \lambda^{i} - \sum_{i=0}^{n} i \cdot \lambda^{i} &= \sum_{i=0}^{n} i \cdot \lambda^{i+1} - \sum_{i=0}^{n} i \cdot \lambda^{i} = \sum_{i=1}^{n+1} (i-1) \cdot \lambda^{i} - \sum_{i=0}^{n} i \cdot \lambda^{i} \\ &= n \cdot \lambda^{n+1} + \sum_{i=1}^{n} (i-1) \cdot \lambda^{i} - i \cdot \lambda = n \cdot \lambda^{n+1} - \sum_{i=1}^{n} \lambda^{i} \end{aligned}$$

 $\sum\overline{i\cdot\lambda}^i$

$$\begin{split} \lambda \cdot \sum_{i=0}^{n} i \cdot \lambda^{i} - \sum_{i=0}^{n} i \cdot \lambda^{i} &= \sum_{i=0}^{n} i \cdot \lambda^{i+1} - \sum_{i=0}^{n} i \cdot \lambda^{i} = \sum_{i=1}^{n+1} (i-1) \cdot \lambda^{i} - \sum_{i=0}^{n} i \cdot \lambda^{i} \\ &= n \cdot \lambda^{n+1} + \sum_{i=1}^{n} (i-1) \cdot \lambda^{i} - i \cdot \lambda = n \cdot \lambda^{n+1} - \sum_{i=1}^{n} \lambda^{i} \\ &= n \cdot \lambda^{n+1} - \frac{\lambda^{n+1} - 1}{\lambda - 1} + 1 \end{split}$$

26

 $\sum\overline{i\cdot\lambda}^i$

$$\begin{split} \lambda \cdot \sum_{i=0}^{n} i \cdot \lambda^{i} - \sum_{i=0}^{n} i \cdot \lambda^{i} &= \sum_{i=0}^{n} i \cdot \lambda^{i+1} - \sum_{i=0}^{n} i \cdot \lambda^{i} = \sum_{i=1}^{n+1} (i-1) \cdot \lambda^{i} - \sum_{i=0}^{n} i \cdot \lambda^{i} \\ &= n \cdot \lambda^{n+1} + \sum_{i=1}^{n} (i-1) \cdot \lambda^{i} - i \cdot \lambda = n \cdot \lambda^{n+1} - \sum_{i=1}^{n} \lambda^{i} \\ &= n \cdot \lambda^{n+1} - \frac{\lambda^{n+1} - 1}{\lambda - 1} + 1 \\ \implies (\lambda - 1) \cdot \sum_{i=0}^{n} i \cdot \lambda^{i} = n \cdot \lambda^{n+1} - \frac{\lambda^{n+1} - 1}{\lambda - 1} + 1 \end{split}$$

 $\sum i \cdot \lambda^i$

$$\begin{split} \lambda \cdot \sum_{i=0}^{n} i \cdot \lambda^{i} - \sum_{i=0}^{n} i \cdot \lambda^{i} &= \sum_{i=0}^{n} i \cdot \lambda^{i+1} - \sum_{i=0}^{n} i \cdot \lambda^{i} = \sum_{i=1}^{n+1} (i-1) \cdot \lambda^{i} - \sum_{i=0}^{n} i \cdot \lambda^{i} \\ &= n \cdot \lambda^{n+1} + \sum_{i=1}^{n} (i-1) \cdot \lambda^{i} - i \cdot \lambda = n \cdot \lambda^{n+1} - \sum_{i=1}^{n} \lambda^{i} \\ &= n \cdot \lambda^{n+1} - \frac{\lambda^{n+1} - 1}{\lambda - 1} + 1 \\ \implies (\lambda - 1) \cdot \sum_{i=0}^{n} i \cdot \lambda^{i} = n \cdot \lambda^{n+1} - \frac{\lambda^{n+1} - 1}{\lambda - 1} + 1 \end{split}$$

For $\lambda = 2$:

 $\sum i \cdot \lambda^i$

$$\begin{split} \lambda \cdot \sum_{i=0}^{n} i \cdot \lambda^{i} - \sum_{i=0}^{n} i \cdot \lambda^{i} &= \sum_{i=0}^{n} i \cdot \lambda^{i+1} - \sum_{i=0}^{n} i \cdot \lambda^{i} = \sum_{i=1}^{n+1} (i-1) \cdot \lambda^{i} - \sum_{i=0}^{n} i \cdot \lambda^{i} \\ &= n \cdot \lambda^{n+1} + \sum_{i=1}^{n} (i-1) \cdot \lambda^{i} - i \cdot \lambda = n \cdot \lambda^{n+1} - \sum_{i=1}^{n} \lambda^{i} \\ &= n \cdot \lambda^{n+1} - \frac{\lambda^{n+1} - 1}{\lambda - 1} + 1 \\ \implies (\lambda - 1) \cdot \sum_{i=0}^{n} i \cdot \lambda^{i} = n \cdot \lambda^{n+1} - \frac{\lambda^{n+1} - 1}{\lambda - 1} + 1 \end{split}$$

For $\lambda = 2$: $\sum_{i=0}^{n} i \cdot 2^{i} = n \cdot 2^{n+1} - 2^{n+1} + 1 + 1 = (n-1) \cdot 2^{n+1} + 2$

Quiz

```
void g(unsigned n){
 for (unsigned k = 1; k != n; ++k){
    // what does the following code do?
   unsigned prev = k-1;
   for (unsigned num = k; num != 0; num /= 2){
     if (num % 2 != prev % 2)
       f();
     prev /= 2;
   }
}
```

Q: Asymptotic number of calls of f?

Quiz

```
void g(unsigned n){
 for (unsigned k = 1; k != n ; ++k){
    // call f for all bits that toggle from k-1 to k
   unsigned prev = k-1;
   for (unsigned num = k; num != 0; num /= 2){
     if (num % 2 != prev % 2)
       f();
     prev /= 2;
   }
}
```

Q: Asymptotic number of calls of f?

```
A: \Theta(n) (Counting example from class).
```

Recap dynamically allocated memory

Important: Every new needs its delete and only one!

Important: Every new needs its delete and only one!

Therefore "Rule of three":

- constructor
- copy constructor
- destructor

Important: Every new needs its delete and only one!

Therefore "Rule of three":

- constructor
- copy constructor
- destructor

Being lazy "Rule of two":

- never copy (unsafe)
- make copy constructor private (safe) or deleted

7. Code-Example: Dynamically Sized Array

Dynamically Sized Array

- Preparation for exercise "Double Ended Queue"
- We're going to implement our own std::vector

8. Tips for code expert

These are the ones due Thu 13.03.2025, 23:59 (in 2 days) Recursive Function Analysis

- Please make sure to upload your Solution correctly
- Ideally as a PDF

These are the ones due Thu 13.03.2025, 23:59 (in 2 days) Recursive Function Analysis

- Please make sure to upload your Solution correctly
- Ideally as a PDF

The Master Method

Do we want to go over this again?

These are the ones due Thu 13.03.2025, 23:59 (in 2 days) Recursive Function Analysis

- Please make sure to upload your Solution correctly
- Ideally as a PDF

The Master Method

Do we want to go over this again?

Throwing Eggs

Don't spend too much time on this

These are the ones due Thu 13.03.2025, 23:59 (in 2 days) Recursive Function Analysis

- Please make sure to upload your Solution correctly
- Ideally as a PDF

The Master Method

Do we want to go over this again?

Throwing Eggs

Don't spend too much time on this

Mergesort

Classic coding exercise

These are the ones due Thu 13.03.2025, 23:59 (in 2 days) Recursive Function Analysis

- Please make sure to upload your Solution correctly
- Ideally as a PDF

The Master Method

Do we want to go over this again?

Throwing Eggs

Don't spend too much time on this

Mergesort

Classic coding exercise

Matrices

Go over the concepts of iterators and **const** again if needed

11 . . .

void funct(...) const f

These are the ones due Thu 20.03.2025, 23:59 (next week) Task "Stable and In-Situ Sorting"

These are the ones due Thu 20.03.2025, 23:59 (next week) Task "Stable and In-Situ Sorting"

"...in their unmodified form..."

These are the ones due Thu 20.03.2025, 23:59 (next week) Task "Stable and In-Situ Sorting"

"... in their unmodified form..."

Task "Amortized Analysis: Dynamic Array"

These are the ones due Thu 20.03.2025, 23:59 (next week) Task "Stable and In-Situ Sorting"

"...in their unmodified form..."

Task "Amortized Analysis: Dynamic Array"

- Ottman/Widmayer, Chapter 3.3 (depending on version)
- Cormen et al, Chapter 17 (or 16 depending on version)

These are the ones due Thu 20.03.2025, 23:59 (next week) Task "Stable and In-Situ Sorting"

"...in their unmodified form..."

Task "Amortized Analysis: Dynamic Array"

- Ottman/Widmayer, Chapter 3.3 (depending on version)
- Cormen et al, Chapter 17 (or 16 depending on version)

Task "Double Ended Queue"

These are the ones due Thu 20.03.2025, 23:59 (next week) Task "Stable and In-Situ Sorting"

"...in their unmodified form..."

Task "Amortized Analysis: Dynamic Array"

- Ottman/Widmayer, Chapter 3.3 (depending on version)
- Cormen et al, Chapter 17 (or 16 depending on version)

Task "Double Ended Queue"

- Takes time make sure to start early!
- Dynamic data types and memory management (fun!)
- By the way: the name Double Ended Queue may be misleading because it suggests to be implemented with a linked list. This would make it hard, if not impossible, to fulfill the requirements stated above. Rather think of something like a vector and extend it with push_front()

9. Past Exam Questions

Let's just go over the ones from last time...

10. Outro

General Questions?

See you next time!

