
Datastructures and Algorithms
Amortized Analysis, Code Example "Dynamically Sized Array"

Adel Gavranović — ETH Zürich — 2025

Overview

Learning Objectives
Entry Quiz
Repetition theory

Amortized Analysis
Code-Example: Dynamically Sized Array
Tips for code expert
Past Exam Questions

n.ethz.ch/~agavranovic

 Material

 Webpage

 Mail

1

https://n.ethz.ch/~agavranovic/download/Courses/25-FS-Datastructures-and-Algorithms/
https://n.ethz.ch/~agavranovic
mailto:adel.gavranovic@inf.ethz.ch

1. Follow-up

2

Follow-up from last session
Slide 15 "log(n!) ∈ Θ(n log n)"

I double checked and it seems to be true
Proof via Stirling’s approximation of n!

Slide 19 "Analyse the running time of (recursive) Functions"
If we have enough time left, we might revisit this

Slide 39 "Master Method"
If we have enough time left, we might revisit this too

Slide 42 "Sorting Algorithms"
Who did have a look at it?

Slide 57 "Trade Offer regarding LATEX"
Becuase we didn’t get to everything last time, I deem it would be better
to postpone this

3

2. Feedback regarding code expert

4

General things regarding code expert

Bonus open since Monday(?)
XP needed to unlock it
I’m correcting as quickly as I can, so you all can get started on it

5

Any questions regarding code expert on your part?

6

3. Learning Objectives

7

Objectives

□ Understand the basics of the three Amortized Analysis methods

□ Aggregate Analysis
□ Account Method
□ Potential Method

□ Be prepared for Double Ended Queue exercise on code expert

8

4. Summary

9

Getting on the same page

What happened in the lectures since last time?

10

5. Entry Quiz

11

Quiz

Among a huge number (n) of students present, a price will be awarded to
the student with the median Legi number. There is an argument what kind of
algorithm shall be used to find this student. Mark the correct statements.

(1) In order to have a worst case runtime of O(n log n), we use
BubbleSort
Selection Sort
Mergesort
Quicksort

12

Quiz

Among a huge number (n) of students present, a price will be awarded to
the student with the median Legi number. There is an argument what kind
of algorithm shall be used to find this student. Mark the correct statements.

(2) We use Quickselect with random pivot choice. Then we have
a worst case running time of O(n log n)
a worst case running time of O(n)
an expected running time of O(log n)
an expected running time of O(n)

13

6. Repetition theory

6.1. Amortized Analysis

14

Amortized Analysis

Three Methods
Aggregate analysis
Account Method
Potential Method

15

Example: simple multi-set
Supports operations Insert and Find.
Idea:

Collection of arrays Ai with Length 2i

Every array is either entirely empty or entirely full and stores items in a
sorted order
Between the arrays there is no further relationship

Data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, 20, 24, 36, 48, 75]

We use 0-indexing, such that for the lengths |Ai| = 2i. 16

Example: simple multi-set

For any n ∈ N, we can store exactly n elements in our multi set, without
partially-filled arrays. Intuition: binary representation of n.

#elements in multi-set = |Ak| + |Ak−1| + . . . + |A0|
= bk2k + bk−12k−1 + . . . + b020

= (bk bk−1 . . . b0)2

Where bi = 0 if |Ai| = 0, and 1 if |Ai| = 2i.

17

Example: simple multi-set

Data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, 20, 24, 36, 48, 75]

Algorithm Find: Perform a binary search on each array
Worst-case Runtime: Θ(log2 n),

log 1 + log 2 + log 4 + · · ·+ log 2k =
k∑

i=0
log2 2i = k · (k + 1)

2 ∈ Θ(log2 n).

(k = ⌊log2 n⌋)

18

Example: simple multi-set

Algorithm Insert(x):
New array A′

0 ← [x], i← 0
while Ai ̸= ∅, set A′

i+1 =Merge(Ai, A′
i), Ai ← ∅, i← i + 1

Set Ai ← A′
i

Insert(11)

Pre-insert

A0: [50]
A1: [8, 99]
A2: ∅
A3: [1, 10, 18, . . . , 75]

Temporary

A′
0: [11]

A′
1: [11, 50]

A′
2: [8, 11, 50, 99]

=⇒

Post-insert

A0: ∅
A1: ∅
A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

19

Costs insert

In the following example: n = 2k, k = log2 n

Assumption: creating new array A′
i with length 2i (and, for i > 0 subsequent

merge of A′
i−1 and Ai−1) has costs Θ(2i)

In the worst case, inserting an element into the data structure provides
log2 n such operations.
⇒ Worst-case Costs Insert:

k∑
i=0

2i = 2k+1 − 1 ∈ Θ(n).

20

Aggregate analysis
Level Costs Example Array
0 1 [∗]
1 2 [∗, ∗]
2 4 [∗, ∗, ∗, ∗]
3 8 ∅
4 16 [∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗]

Observation: Starting with an empty container, an insertion sequence
reaches level 0 each time, level 1 (with costs 2) every second time, level 2
(with costs 4) every fourth time, etc.

Total costs: 1 · n
1 + 2 · n

2 + 4 · n
4 + · · ·+ 2k · n

2k = (k + 1)n
This is in Θ(n log n) because k = log2 n.
Amortized cost per operation: Θ((n log n)/n) = Θ(log n).

21

Accounting method

Every element i (1 ≤ i ≤ n) pays ai = log2 n coins when it is inserted into
the data structure.
The element pays the allocation of the first array and every subsequent
merge-step that can occur until the element has reached array Ak+1
(k = ⌊log2 n⌋).
The account provides enough credit to pay for all Merge operations of the
n elements.

⇒ Amortized costs for insertion O(log n)

22

Potential method

We know from the accounting method that each element on the way to
higher levels requires log n coins, i.e. that an element on level i still needs
to posess k − i coins. We use the potential

Φj =
∑

0≤i≤k:Ai ̸=∅
(k − i) · 2i

23

Potential method
For the change of the potential Φj − Φj−1 we only have to consider the
lower l levels that are occupied at time point j − 1 (in analogy to the binary
counter). Let l be the smallest index such that array Al is empty.
After merging arrays A0 . . . Al−1, array Al is full and arrays Ai(0 ≤ i < l) are
now empty. Therefore:

Φj − Φj−1 = (k − l) · 2l −
l−1∑
i=0

(k − i) · 2i

Real costs:

tj =
l∑

i=0
2i = 2l+1 − 1

24

Potential method

Φj − Φj−1 = (k − l) · 2l −
l−1∑
i=0

(k − i) · 2i

= (k − l) · 2l − k · (2l − 1) +
l−1∑
i=0

i · 2i

= (k − l) · 2l − k · (2l − 1) + l · 2l − 2l+1 + 2
= k − 2l+1 + 2

=⇒ Φj − Φj−1 + tj = k − 2l+1 + 2 + 2l+1 − 1 = k + 1 ∈ Θ(log n)

See CLRS Chapter 16.
25

∑
i · λi

Always the same trick:

λ ·
n∑

i=0
i · λi −

n∑
i=0

i · λi =
n∑

i=0
i · λi+1 −

n∑
i=0

i · λi =
n+1∑
i=1

(i− 1) · λi −
n∑

i=0
i · λi

= n · λn+1 +
n∑

i=1
(i− 1) · λi − i · λ = n · λn+1 −

n∑
i=1

λi

= n · λn+1 − λn+1 − 1
λ− 1 + 1

=⇒ (λ− 1) ·
n∑

i=0
i · λi = n · λn+1 − λn+1 − 1

λ− 1 + 1

For λ = 2:
n∑

i=0
i · 2i = n · 2n+1 − 2n+1 + 1 + 1 = (n− 1) · 2n+1 + 2

26

Quiz

void g(unsigned n){
for (unsigned k = 1; k != n ; ++k){

// call f for all bits that toggle from k-1 to k
unsigned prev = k-1;
for (unsigned num = k; num != 0; num /= 2){

if (num % 2 != prev % 2)
f();

prev /= 2;
}

}
}

Q: Asymptotic number of calls of f?

A: Θ(n) (Counting example from class).

27

Recap dynamically allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three”:
constructor
copy constructor
destructor

Being lazy “Rule of two”:
never copy (unsafe)
make copy constructor
private (safe) or deleted

28

7. Code-Example: Dynamically Sized Array

29

Dynamically Sized Array

Preparation for exercise "Double Ended Queue"
We’re going to implement our own std::vector

30

8. Tips for code expert

31

Tips for code expert Exercise 3
These are the ones due Thu 13.03.2025, 23:59 (in 2 days)
Recursive Function Analysis

Please make sure to upload your Solution correctly
Ideally as a PDF

The Master Method
Do we want to go over this again?

Throwing Eggs
Don’t spend too much time on this

Mergesort
Classic coding exercise

Matrices
Go over the concepts of iterators and const again if needed

32

Tips for code expert Exercise 4
These are the ones due Thu 20.03.2025, 23:59 (next week)
Task "Stable and In-Situ Sorting"

". . . in their unmodified form. . . "
Task "Amortized Analysis: Dynamic Array"

Ottman/Widmayer, Chapter 3.3 (depending on version)
Cormen et al, Chapter 17 (or 16 depending on version)

Task "Double Ended Queue"
Takes time – make sure to start early!
Dynamic data types and memory management (fun!)
By the way: the name Double Ended Queue may be misleading because
it suggests to be implemented with a linked list. This would make it
hard, if not impossible, to fulfill the requirements stated above. Rather
think of something like a vector and extend it with push_front()

33

9. Past Exam Questions

34

No new ones this week. . .

Let’s just go over the ones from last time. . .

35

10. Outro

36

General Questions?

37

See you next time!

Have a nice week!

38

	Follow-up
	Feedback regarding codeexpertcolorcodeexpertcolorcode expert
	Learning Objectives
	Summary
	Entry Quiz
	Repetition theory
	Amortized Analysis

	Code-Example: Dynamically Sized Array
	Tips for codeexpertcolorcodeexpertcolorcode expert
	Past Exam Questions
	Outro

