
Datastructures and Algorithms
Binary Trees, Heaps, Hashing

Adel Gavranovi! — ETH Zürich — 2025



Overview

Learning Objectives
Binary Trees and Heaps
Hashing
Binary Tree: Simple Tasks
Code-Example: Hashtables, Hash-
functions and Collisions
Past Exam Questions
Tips for code expert

n.ethz.ch/~agavranovic

! Material

! Webpage

! Mail

→ 1



1. Follow-up

→ 2



Follow-up from last session

Regarding last week’s in-class coding exercise

No worries if you were not able to solve the example exercise during the
session
It was a rather hard task to get into (no matter how “easy” it was to solve)

In general: the reference solutions (for the in-class code examples) will
now be published sooner

→ 3



Follow-up from last session

Regarding last week’s in-class coding exercise

No worries if you were not able to solve the example exercise during the
session
It was a rather hard task to get into (no matter how “easy” it was to solve)

In general: the reference solutions (for the in-class code examples) will
now be published sooner

→ 3



Follow-up from last session

Regarding last week’s in-class coding exercise

No worries if you were not able to solve the example exercise during the
session
It was a rather hard task to get into (no matter how “easy” it was to solve)

In general: the reference solutions (for the in-class code examples) will
now be published sooner

→ 3



Follow-up from last session

Regarding last week’s in-class coding exercise

No worries if you were not able to solve the example exercise during the
session
It was a rather hard task to get into (no matter how “easy” it was to solve)

In general: the reference solutions (for the in-class code examples) will
now be published sooner

→ 3



2. Feedback regarding code expert

→ 4



General things regarding code expert

Re Corrections: I’m on it
If you need the XP: email me

→ 5



General things regarding code expert

Re Corrections: I’m on it

If you need the XP: email me

→ 5



General things regarding code expert

Re Corrections: I’m on it
If you need the XP: email me

→ 5



Any questions regarding code expert on your part?

→ 6



3. Learning Objectives

→ 7



Objectives

↭ Understand Search Trees and Heaps, and operations on them as well as
their drawbacks and benefits

↭ Be able to perform operations on Search Trees and Heaps by hand
↭ Understand Hashing, its components, and related concepts:

↭ Prehashing
↭ Collision
↭ Simple Uniform Hashing
↭ Uniform Hashing
↭ Open/Closed Addressing & Closed/Open Hashing
↭ Chaining

↭ Be able to apply simple hashing methods by hand

→ 8



4. Summary

→ 9



Getting on the same page

→ 10



5. Binary Trees and Heaps

→ 11



Comparison of binary Trees

Search trees Heaps
Min- / Max- Heap

Balanced trees AVL,
red-black tree

in C++: std::make_heap std::map

3

4

5

7

9

16

1

2

235

7 9

16

1

4

2

3

4

5

7

9

16

1

Insertion !(h(T )) !(log n) !(log n)
Search !(h(T )) !(n) (!!) !(log n)

Deletion !(h(T )) Search + !(log n) !(log n)
Min/Max !(h(T )) !(1)/search !(log n)

Remark: !(log n)↑ !(h(T ))↑ !(n)

→ 12



Comparison of binary Trees

Search trees Heaps
Min- / Max- Heap

Balanced trees AVL,
red-black tree

in C++: std::make_heap std::map

3

4

5

7

9

16

1

2

235

7 9

16

1

4

2

3

4

5

7

9

16

1

Insertion !(h(T )) !(log n) !(log n)
Search !(h(T )) !(n) (!!) !(log n)

Deletion !(h(T )) Search + !(log n) !(log n)
Min/Max !(h(T )) !(1)/search !(log n)

Remark: !(log n)↑ !(h(T ))↑ !(n)

→ 12



Recall: Binary Tree as Array

22

20

16

3 2

12

8 11

18

15

14

17

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

22
1
20
2
18
3
16
4
12
5
15
6
17
7

3
8

2
9

8
10

11
11
14
12

22 20 18 16 12 15 17 3 2 8 11 14

→ 13



Recall: Binary Tree as Array

22

20

16

3 2

12

8 11

18

15

14

17

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

22
1
20
2
18
3
16
4
12
5
15
6
17
7

3
8

2
9

8
10

11
11
14
12

22 20 18 16 12 15 17 3 2 8 11 14

→ 13



Recall: Binary Tree as Array

22

20

16

3 2

12

8 11

18

15

14

17

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

22

1

20

2

18

3

16

4

12

5

15

6

17

7

3

8

2

9

8

10

11

11

14

12
22 20 18 16 12 15 17 3 2 8 11 14

→ 13



Repetition: Binary Trees, Inserting a Key

Binary Search Trees
Search for Key.
Insert at the reached empty
leaf (null).

4

1 8

6

7

16

MinHeap
Insert at the very next free spot (back of
the array).
Restore Heap-Condition: siftUp (climb
successively).

1

4

8 6

7

16

→ 14



Repetition: Binary Trees, Inserting a Key

Binary Search Trees
Search for Key.
Insert at the reached empty
leaf (null).

4

1 8

6

7

16

MinHeap
Insert at the very next free spot (back of
the array).
Restore Heap-Condition: siftUp (climb
successively).

1

4

8 6

7

16

Exercise: Insert 4, 8, 16, 1, 6, 7 into empty Search Tree/Min-Heap.→ 14



Repetition: Binary Trees, Inserting a Key

Binary Search Trees
Search for Key.
Insert at the reached empty
leaf (null).

4

1 8

6

7

16

MinHeap
Insert at the very next free spot (back of
the array).
Restore Heap-Condition: siftUp (climb
successively).

1

4

8 6

7

16

Exercise: Insert 4, 8, 16, 1, 6, 7 into empty Search Tree/Min-Heap.→ 14



Repetition: Binary Trees, Inserting a Key

Binary Search Trees
Search for Key.
Insert at the reached empty
leaf (null).

4

1 8

6

7

16

MinHeap
Insert at the very next free spot (back of
the array).
Restore Heap-Condition: siftUp (climb
successively).

1

4

8 6

7

16

Exercise: Insert 4, 8, 16, 1, 6, 7 into empty Search Tree/Min-Heap.→ 14



Repetition: Binary Trees, Deleting a Key

Binary Search Trees
Replace key k by symmetric
successor n.
Careful: What about right
child of n?

6

1 8

7 16

MinHeap
Replace key by last element of the array.
Restore Heap-Condition: siftDown or
siftUp.

1

6

8 16

7

→ 15



Repetition: Binary Trees, Deleting a Key

Binary Search Trees
Replace key k by symmetric
successor n.
Careful: What about right
child of n?

6

1 8

7 16

MinHeap
Replace key by last element of the array.
Restore Heap-Condition: siftDown or
siftUp.

1

6

8 16

7

Exercise: Delete 4 from Search Tree/Min-Heap.
→ 15



Repetition: Binary Trees, Deleting a Key

Binary Search Trees
Replace key k by symmetric
successor n.
Careful: What about right
child of n?

6

1 8

7 16

MinHeap
Replace key by last element of the array.
Restore Heap-Condition: siftDown or
siftUp.

1

6

8 16

7

Exercise: Delete 4 from Search Tree/Min-Heap.
→ 15



Repetition: Binary Trees, Deleting a Key

Binary Search Trees
Replace key k by symmetric
successor n.
Careful: What about right
child of n?

6

1 8

7 16

MinHeap
Replace key by last element of the array.
Restore Heap-Condition: siftDown or
siftUp.

1

6

8 16

7

Exercise: Delete 4 from Search Tree/Min-Heap.
→ 15



Traversal possibilities From the
Lecture

1

2 3
preorder

3

1 2
postorder

2

1 3
inorder

→ 16



Traversal possibilities From the
Lecture

preorder:
v, then Tleft(v), then Tright(v).

8, 3, 5, 4, 13, 10, 9, 19

postorder:
Tleft(v), then Tright(v), then v.

4, 5, 3, 9, 10, 19, 13, 8

inorder:
Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

→ 17



Traversal possibilities From the
Lecture

preorder:
v, then Tleft(v), then Tright(v).

8, 3, 5, 4, 13, 10, 9, 19

postorder:
Tleft(v), then Tright(v), then v.

4, 5, 3, 9, 10, 19, 13, 8

inorder:
Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

→ 17



Traversal possibilities From the
Lecture

preorder:
v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19

postorder:
Tleft(v), then Tright(v), then v.

4, 5, 3, 9, 10, 19, 13, 8

inorder:
Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

→ 17



Traversal possibilities From the
Lecture

preorder:
v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19

postorder:
Tleft(v), then Tright(v), then v.

4, 5, 3, 9, 10, 19, 13, 8

inorder:
Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

→ 17



Traversal possibilities From the
Lecture

preorder:
v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19

postorder:
Tleft(v), then Tright(v), then v.
4, 5, 3, 9, 10, 19, 13, 8

inorder:
Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

→ 17



Traversal possibilities From the
Lecture

preorder:
v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19

postorder:
Tleft(v), then Tright(v), then v.
4, 5, 3, 9, 10, 19, 13, 8

inorder:
Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

→ 17



Traversal possibilities From the
Lecture

preorder:
v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19

postorder:
Tleft(v), then Tright(v), then v.
4, 5, 3, 9, 10, 19, 13, 8

inorder:
Tleft(v), then v, then Tright(v).
3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

→ 17



Quiz

For each of the following traversals, draw a binary search tree that could
have produced such a traversal. Is the tree unique, or could di"erent trees
have produced this traversal?

inorder 1 2 3 4 5 6 7 8
preorder 4 3 1 2 8 6 5 7
postorder 1 3 2 5 6 8 7 4

Provide for each order a sequence of numbers from {1, . . . , 4} such that it
cannot result from a valid binary search tree

→ 18



Answers

inorder: any binary search tree with numbers {1, . . . , 8} is valid.
The tree is not unique
There is no search tree for any non-sorted sequence. Counterexample 1 2 4 3

→ 19



Answers

preorder 4 3 1 2 8 6 5 7

4

3

1

2

8

6

5 7

Tree is unique
It must hold recursively that first there is a group of numbers with lower and then
with higher number than the first value. Counterexample: 3 1 4 2

→ 20



Answers
postorder 1 3 2 5 6 8 7 4

4

2

1 3

7

6

5

8

Tree is unique
Construction here: https://www.techiedelight.com/
build-binary-search-tree-from-postorder-sequence/, similar argument as
before, but backwards. Counterexample 4 2 1 3

→ 21



Quiz

True or false:
1. The preorder is the reversed postorder.
2. The first node in the preorder is always the root.
3. The first node in the inorder is never the root.
4. Inserting the nodes in preorder into an empty tree leads to the same
tree.

5. Inserting the nodes in postorder into an empty tree leads to the same
tree.

6. Inserting the nodes in inorder into an empty tree leads to the same
tree.

→ 22



Quiz: Solution

True or false:
1. The preorder is the reversed postorder.

False Preorder: 4, 2, 5. Postorder: 2, 5, 4.
4

2 5

2. The first node in the preorder is always the root.
true (by definition!)

3. The first node in the inorder is never the root.
False. When the left subtree is empty, the root is the first node inorder.

→ 23



Quiz: Solution

True or false:
1. The preorder is the reversed postorder.
False Preorder: 4, 2, 5. Postorder: 2, 5, 4.

4

2 5

2. The first node in the preorder is always the root.
true (by definition!)

3. The first node in the inorder is never the root.
False. When the left subtree is empty, the root is the first node inorder.

→ 23



Quiz: Solution

True or false:
1. The preorder is the reversed postorder.
False Preorder: 4, 2, 5. Postorder: 2, 5, 4.

4

2 5

2. The first node in the preorder is always the root.

true (by definition!)
3. The first node in the inorder is never the root.
False. When the left subtree is empty, the root is the first node inorder.

→ 23



Quiz: Solution

True or false:
1. The preorder is the reversed postorder.
False Preorder: 4, 2, 5. Postorder: 2, 5, 4.

4

2 5

2. The first node in the preorder is always the root.
true (by definition!)

3. The first node in the inorder is never the root.
False. When the left subtree is empty, the root is the first node inorder.

→ 23



Quiz: Solution

True or false:
1. The preorder is the reversed postorder.
False Preorder: 4, 2, 5. Postorder: 2, 5, 4.

4

2 5

2. The first node in the preorder is always the root.
true (by definition!)

3. The first node in the inorder is never the root.

False. When the left subtree is empty, the root is the first node inorder.

→ 23



Quiz: Solution

True or false:
1. The preorder is the reversed postorder.
False Preorder: 4, 2, 5. Postorder: 2, 5, 4.

4

2 5

2. The first node in the preorder is always the root.
true (by definition!)

3. The first node in the inorder is never the root.
False. When the left subtree is empty, the root is the first node inorder.

→ 23



Quiz: Solution

True or false:
4. Inserting the nodes of a tree in preorder into a new empty tree leads to
the same tree.

True. Since first the root is inserted and then its children, we will get
the same tree.

5. Inserting the nodes in postorder into an empty tree leads to the same
tree.
False. But it is true for the reversed postorder!

6. Inserting the nodes in inorder into an empty tree leads to the same
tree.
False. There are many di"erent trees with the same inorder!

→ 24



Quiz: Solution

True or false:
4. Inserting the nodes of a tree in preorder into a new empty tree leads to
the same tree.
True. Since first the root is inserted and then its children, we will get
the same tree.

5. Inserting the nodes in postorder into an empty tree leads to the same
tree.
False. But it is true for the reversed postorder!

6. Inserting the nodes in inorder into an empty tree leads to the same
tree.
False. There are many di"erent trees with the same inorder!

→ 24



Quiz: Solution

True or false:
4. Inserting the nodes of a tree in preorder into a new empty tree leads to
the same tree.
True. Since first the root is inserted and then its children, we will get
the same tree.

5. Inserting the nodes in postorder into an empty tree leads to the same
tree.

False. But it is true for the reversed postorder!
6. Inserting the nodes in inorder into an empty tree leads to the same
tree.
False. There are many di"erent trees with the same inorder!

→ 24



Quiz: Solution

True or false:
4. Inserting the nodes of a tree in preorder into a new empty tree leads to
the same tree.
True. Since first the root is inserted and then its children, we will get
the same tree.

5. Inserting the nodes in postorder into an empty tree leads to the same
tree.
False. But it is true for the reversed postorder!

6. Inserting the nodes in inorder into an empty tree leads to the same
tree.
False. There are many di"erent trees with the same inorder!

→ 24



Quiz: Solution

True or false:
4. Inserting the nodes of a tree in preorder into a new empty tree leads to
the same tree.
True. Since first the root is inserted and then its children, we will get
the same tree.

5. Inserting the nodes in postorder into an empty tree leads to the same
tree.
False. But it is true for the reversed postorder!

6. Inserting the nodes in inorder into an empty tree leads to the same
tree.

False. There are many di"erent trees with the same inorder!

→ 24



Quiz: Solution

True or false:
4. Inserting the nodes of a tree in preorder into a new empty tree leads to
the same tree.
True. Since first the root is inserted and then its children, we will get
the same tree.

5. Inserting the nodes in postorder into an empty tree leads to the same
tree.
False. But it is true for the reversed postorder!

6. Inserting the nodes in inorder into an empty tree leads to the same
tree.
False. There are many di"erent trees with the same inorder!

→ 24



Heap

On the following Min-Heap, perform an extract-min operation, including
re-establishing the heap-condition, as shown in class. What does the heap
look like after the operation?

2

5

13

21 42

7

14 8

9

10

11 99

15

→ 25



Solution

5

7

13

21 42

8

14 99

9

10

11

15

→ 26



Quiz: Number of MaxHeaps on n keys

Let N(n) denote the number of distinct Max-Heaps which can be built from
all the keys 1, 2, . . . , n. For example we have
N(1) = 1, N(2) = 1, N(3) = 2, N(4) = 3 and N(5) = 8.
Find the values N(6) and N(7).

4

2

1

3

4

3

1

2

4

3

2

1

→ 27



Number of MaxHeaps on n distinct keys
A MaxHeap containing the elements 1, 2, 3, 4, 5, 6 has the structure:

6

?

? ?

?

?

Number of combinations to choose elements for the left subtree:
(

5
3

)
.

↓ N(6) =
(

5
3

)

· N(3) · N(2) = 10 · 2 · 1 = 20.

and N(7) =
(

6
3

)

· N(3) · N(3) = 20 · 2 · 2 = 80.

→ 28



6. Hashing

→ 29



Hashing well-done

Useful Hashing. . .
distributes the keys as uniformly as possible in the hash table.
avoids probing over long areas of used entries
(e.g. primary clustering).
avoids using the same probing sequence for keys with the same hash
value (e.g. secondary clustering).

→ 30



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o!set(j, k):

linear probing,
o!set(j, k) = j.
Double Hashing,
o!set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 417 45

254 17 45

→ 31



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o!set(j, k):

linear probing,
o!set(j, k) = j.
Double Hashing,
o!set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25

417 45

254 17 45

→ 31



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o!set(j, k):

linear probing,
o!set(j, k) = j.
Double Hashing,
o!set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 4

17 45

254 17 45

→ 31



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o!set(j, k):

linear probing,
o!set(j, k) = j.
Double Hashing,
o!set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 417

45

254 17 45

→ 31



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o!set(j, k):

linear probing,
o!set(j, k) = j.
Double Hashing,
o!set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 417 45

254 17 45

→ 31



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o!set(j, k):

linear probing,
o!set(j, k) = j.
Double Hashing,
o!set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 417 45

25

4 17 45

→ 31



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o!set(j, k):

linear probing,
o!set(j, k) = j.
Double Hashing,
o!set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 417 45

254

17 45

→ 31



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o!set(j, k):

linear probing,
o!set(j, k) = j.
Double Hashing,
o!set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 417 45

254 17

45

→ 31



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o!set(j, k):

linear probing,
o!set(j, k) = j.
Double Hashing,
o!set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 417 45

254 17 45

→ 31



Quiz: Hashing
A hash table of length 10 uses closed hashing with hash function h(k) = k mod 10,
and linear probing (probing goes to the right). After inserting five values into an
empty hash table, the table is as shown below.

0 1 2 3 4 5 6 7 8 9
32 52 33 74 96

Which of the following choice(s) give possible order(s) in which the key values
could have been inserted in the table?

(A) 32, 33, 52, 96, 74
(B) 32, 52, 33, 74, 96
(C) 32, 52, 74, 96, 33
(D) 96, 32, 52, 33, 74

→ 32



Quiz: Hashing
A hash table of length 10 uses closed hashing with hash function h(k) = k mod 10,
and linear probing (probing goes to the right). After inserting five values into an
empty hash table, the table is as shown below.

0 1 2 3 4 5 6 7 8 9
32 52 33 74 96

Which of the following choice(s) give possible order(s) in which the key values
could have been inserted in the table?

(A) 32, 33, 52, 96, 74
(B) 32, 52, 33, 74, 96
(C) 32, 52, 74, 96, 33
(D) 96, 32, 52, 33, 74

→ 32



7. Binary Tree: Simple Tasks
Hands-on example: Binary Tree

→ 33



8. Code-Example: Hashtables, Hash-
functions and Collisions
Hands-on example: importance of a well designed hashing strategy

→ 34



9. Past Exam Questions

→ 35



Past Exam 2022: Task 1d)

→ 36



Past Exam 2022: Task 1d) – Solution

→ 37



10. Tips for code expert

→ 38



Finding a Sub-Array

Given: two integer arrays A = (a0, . . . , an→1) and B = (b0, . . . , bk→1)
Task: Find position of B in A.

Naive: Loop through A, check whether the following k entries match B.

O(nk) comparison operations

Solution using hashing: Calculate hash h(B) and compare it to
h((ai, ai+1, . . . , ai+k→1)).
Avoid re-computing h((ai, ai+1, . . . , ai+k→1) for each i =↓ O(n)
expected

→ 39



Finding a Sub-Array

Given: two integer arrays A = (a0, . . . , an→1) and B = (b0, . . . , bk→1)
Task: Find position of B in A.
Naive: Loop through A, check whether the following k entries match B.

O(nk) comparison operations

Solution using hashing: Calculate hash h(B) and compare it to
h((ai, ai+1, . . . , ai+k→1)).
Avoid re-computing h((ai, ai+1, . . . , ai+k→1) for each i =↓ O(n)
expected

→ 39



Finding a Sub-Array

Given: two integer arrays A = (a0, . . . , an→1) and B = (b0, . . . , bk→1)
Task: Find position of B in A.
Naive: Loop through A, check whether the following k entries match B.

O(nk) comparison operations

Solution using hashing: Calculate hash h(B) and compare it to
h((ai, ai+1, . . . , ai+k→1)).
Avoid re-computing h((ai, ai+1, . . . , ai+k→1) for each i =↓ O(n)
expected

→ 39



Finding a Sub-Array

Given: two integer arrays A = (a0, . . . , an→1) and B = (b0, . . . , bk→1)
Task: Find position of B in A.
Naive: Loop through A, check whether the following k entries match B.

O(nk) comparison operations

Solution using hashing: Calculate hash h(B) and compare it to
h((ai, ai+1, . . . , ai+k→1)).
Avoid re-computing h((ai, ai+1, . . . , ai+k→1) for each i =↓ O(n)
expected

→ 39



Sliding Window Hash
Possible hash function: sum of all elements:

Can be updated easily: subtract ai and add ai+k .
However: bad hash function

Better:

Hc,m((ai, · · · , ai+k→1)) =



k→1∑

j=0
ai+j · ck→j→1



 mod m

Let c be a prime number: c = 1021
Let m = 215 + 3
Since m is just over 215, intermediate multiplications and additions fit
safely in a 32-bit integer, avoiding overflow.

→ 40



Sliding Window Hash
Possible hash function: sum of all elements:

Can be updated easily: subtract ai and add ai+k .
However: bad hash function

Better:

Hc,m((ai, · · · , ai+k→1)) =



k→1∑

j=0
ai+j · ck→j→1



 mod m

Let c be a prime number: c = 1021
Let m = 215 + 3
Since m is just over 215, intermediate multiplications and additions fit
safely in a 32-bit integer, avoiding overflow.

→ 40



Sliding Window Hash

Make sure that
the algorithm computes ck only once,
all computations are modulo m for all values in order not to get an
overflow (recall the rules of modular arithmetic), and
the values are always positive (e.g., by adding multiples of m).

→ 41



Computing with Modulo

(a + b) mod m = ((a mod m) + (b mod m)) mod m

(a ↔ b) mod m = ((a mod m) ↔ (b mod m) + m) mod m

(a · b) mod m = ((a mod m) · (b mod m)) mod m

Exercise: Compute

12746357 mod 11

→ 42



Computing Modulo

Exercise: Compute

12746357 mod 11

= (7 + 5 · 10 + 3 · 102 + 6 · 103 + 4 · 104 + 7 · 105 + 2 · 106 + 1 · 107) mod 11
= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) mod 11
= (7 + 6 + 3 + 5 + 4 + 4 + 2 + 10) mod 11
= 8 mod 11.

For the second equality we used the fact that 102 mod 11 = 1.

→ 43



Computing Modulo

Exercise: Compute

12746357 mod 11
= (7 + 5 · 10 + 3 · 102 + 6 · 103 + 4 · 104 + 7 · 105 + 2 · 106 + 1 · 107) mod 11

= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) mod 11
= (7 + 6 + 3 + 5 + 4 + 4 + 2 + 10) mod 11
= 8 mod 11.

For the second equality we used the fact that 102 mod 11 = 1.

→ 43



Computing Modulo

Exercise: Compute

12746357 mod 11
= (7 + 5 · 10 + 3 · 102 + 6 · 103 + 4 · 104 + 7 · 105 + 2 · 106 + 1 · 107) mod 11
= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) mod 11

= (7 + 6 + 3 + 5 + 4 + 4 + 2 + 10) mod 11
= 8 mod 11.

For the second equality we used the fact that 102 mod 11 = 1.

→ 43



Computing Modulo

Exercise: Compute

12746357 mod 11
= (7 + 5 · 10 + 3 · 102 + 6 · 103 + 4 · 104 + 7 · 105 + 2 · 106 + 1 · 107) mod 11
= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) mod 11
= (7 + 6 + 3 + 5 + 4 + 4 + 2 + 10) mod 11

= 8 mod 11.

For the second equality we used the fact that 102 mod 11 = 1.

→ 43



Computing Modulo

Exercise: Compute

12746357 mod 11
= (7 + 5 · 10 + 3 · 102 + 6 · 103 + 4 · 104 + 7 · 105 + 2 · 106 + 1 · 107) mod 11
= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) mod 11
= (7 + 6 + 3 + 5 + 4 + 4 + 2 + 10) mod 11
= 8 mod 11.

For the second equality we used the fact that 102 mod 11 = 1.

→ 43



11. Outro

→ 44



General Questions?

→ 45



See you next time!

Have a nice week!

→ 46


