
Datastructures and Algorithms
2-3 Trees, Red-Black Trees, Quadtrees
Note: This session was held by Tristan Gabl (trgabl)

Adel Gavranović — ETH Zürich — 2025

Overview

Repetition theory
2-3 Trees
Red-Black Trees

Quadtrees
Code-Example n.ethz.ch/~agavranovic

� Material

� Webpage

� Mail

1

https://n.ethz.ch/~agavranovic/download/Courses/25-FS-Datastructures-and-Algorithms/
https://n.ethz.ch/~agavranovic
mailto:adel.gavranovic@inf.ethz.ch

Exercise Review: "Comparing Sorting Algorithms"

Bubblesort min max
Comparisons Θ(n2) Θ(n2)
Sequence any any
Swaps 0 Θ(n2)
Sequence 1, 2, . . . , n n, n− 1, . . . , 1

2

Exercise Review: "Comparing Sorting Algorithms"

InsertionSort min max
Comparisons Θ(n) Θ(n2)
Sequence 1, 2, . . . , n n, n− 1, . . . , 1
Swaps 0 Θ(n2)
Sequence 1, 2, . . . , n n, n− 1, . . . , 1

3

Exercise Review: "Comparing Sorting Algorithms"

SelectionSort min max
Comparisons Θ(n2) Θ(n2)
Sequence any any
Swaps 0 Θ(n)
Sequence 1, 2, . . . , n n, n− 1, . . . , 1

4

Exercise Review: "Comparing Sorting Algorithms"

QuickSort min max
Comparisons Θ(n log n) Θ(n2)
Sequence complex 1, 2, . . . , n
Swaps Θ(n) Θ(n log n)
Sequence 1, 2, . . . , n complex

complex: Sequence must be made such that the pivot halves the sorting
range in each step. For example (n = 7): 4, 5, 7, 6, 2, 1, 3

5

Stable / In Situ
In-Situ

QuickSort uses between Ω(log n) and O(n) extra space to keep track of
the recursive calls.
MergeSort has to merge repeatedly parts of the array. There are
complicated modifications to make MergeSort in-situ, but none that can
be achieved by simple modifications of the standard algorithm.

Stable
Stability of a sorting algorithm only refers to the order of elements with
the same value. Attribute each element with its original position and sort
by value plus position for elements with equal values. Maximally one
additional comparison per element (factor of 2), hence the asymptotic
running time stays the same.

6

1. Repetition theory

7

1. Repetition theory

1.1. 2-3 Trees

8

Searching

14 25

7

5 10 12

18 22

16 19 21 23

38

31 40 46

search(23)→ found

9

2-3 Tree: Insertion

Insert the keys 1, . . . , 7 into an (initially empty) 2-3-tree. Draw the tree after
every step (split/propagate, join, . . .).

10

2-3 Tree: Insertion

1

insert(1):
new node

1 2

insert(2):
join

1 2 3

insert(3):
4-node

2

1 3

insert(3):
split/propagate

2

1 3 4

insert(4):
join

2

1 3 4 5

insert(5):
4-node

2 4

1 3 5

insert(5):
split/propagate

2 4

1 3 5 6

insert(6):
join

11

2-3 Tree: Insertion

2 4

1 3 5 6 7

insert(7):
4-node

2 4 6

1 3 5 7

insert(7):
split/propagate

4

2

1 3

6

5 7

insert(7):
split/propagate

12

2-3 Tree: Deletion

4

2

1 3

6

5 7

Delete key 4 from the resulting tree.

13

2-3 Tree: Deletion

5

2

1 3

6

4 7

1. swap

2 5 6

1 3 4 7

2. create 4-node at
root

2 5

1 3 4 6 7

3. combine with sibling

2 5

1 3 6 7

4. delete key
14

1. Repetition theory

1.2. Red-Black Trees

15

Red-Black Trees

Draw the following 2-3 tree as a red-black tree.

6

2 4

1 3 5

10

7 11 14

⇒

6

4

2

1 3

5

10

7 14

11

16

Red-Black Trees: True or False?

1. Right spine (right outermost path) has length ⌈log2(n + 1)⌉ (where n is
the number of nodes in the corresponding 2-3 tree).
Correct, since there are no right-leaning red edges and we have perfect
black balance.

2. The number of red edges is at most the number of black edges.
Wrong, a tree with 2 nodes and one edge must have a red edge but not
black edge. (The correct upper bound for the number of red edges is
the number of black edges + 1)

3. All nodes in the left subtree of a node are smaller than the node.
Correct, since a red-black tree is a search tree.

17

Red-Black Trees: Insertion

Insert the numbers 1, . . . , 7 into an (initially empty) red-black tree and draw
the tree after every step.
Compare your steps with your result for the 2-3 tree before.

18

Red-Black Trees: Insertion

1

insert(1)

1

2

insert(2): add

2

1

insert(2): rotate_left
(since right child red)

2

1 3

insert(3): add

2

1 3

insert(3): push_up
(two red children)

2

1 3

4

insert(4): add
19

Red-Black Trees: Insertion

2

1 4

3

insert(4): rotate_left
(since right child red)

2

1 4

3 5

insert(5): add

20

Red-Black Trees: Insertion

2

1 4

3 5

insert(5): push_up
(two children red)

4

2

1 3

5

insert(5): rotate_left
(since right child red)

21

Red-Black Trees: Insertion

4

2

1 3

5

6

insert(6): add

4

2

1 3

6

5

insert(6): rotate_left
(since right child red)

22

Red-Black Trees: Insertion

4

2

1 3

6

5 7

insert(7): add

4

2

1 3

6

5 7

insert(7): push_up
(since two children red)

23

Red-Black Trees: Insertion

4

2

1 3

6

5 7

insert(7): push_up
(since both children red)

24

2. Quadtrees

25

Quadtrees

Quadtrees are trees where each node has at most four children.

Main application: Image processing.

26

Quadtrees for Image Compression

Insight: (1) Divide image recursively into four regions, (2) map the regions to
nodes in a quadtree and (3) assign each leaf the average color of its region.

27

Quadtrees for Image Compression

When and where to stop the recursion?

Too early? Is this better? Question: Should we stop when each node is
mapped to a pixel? Answer: We would get the original image but gain no

storage efficiency.

28

Quadtrees for Image Compression

We want
as close approximation as possible, and
as few nodes as possible.

This can be expressed as an optimization problem:

Hγ(T, y) := γ · |L(T)|︸ ︷︷ ︸
Number of leaves

+
∑

r∈L(T)
∥yr − µr∥2

2︸ ︷︷ ︸
Cumulative approximation error of all leaves

where T is a quadtree, y is the image data, and γ ≥ 0 is a regularization
parameter. For a given γ we seek the optimal solution arg minT Hγ(T, y).

29

Quadtrees for Image Compression

Hγ(T, y) := γ · |L(T)|︸ ︷︷ ︸
Number of leaves

+
∑

r∈L(T)
∥yr − µr∥2

2︸ ︷︷ ︸
Cumulative approximation error of all leaves

Question: What is the effect of a low value of γ?
Answer: Improves the approximation at the expense of increasing the size
of the quadtree.

30

Algorithm: Minimize(y,r,γ)
Input: Image data y ∈ RS , rectangle r ⊂ S, regularization γ > 0.
Output: minT γ|L(T)|+ ∥y − µL(T)∥22
if |r| = 0 then return 0
m← γ +

∑
s∈r(ys − µr)2

if |r| > 1 then
Split r into rll,rlr,rul,rur

m1 ← Minimize(y, rll, γ); m2 ← Minimize(y, rlr, γ)
m3 ← Minimize(y, rul, γ); m4 ← Minimize(y, rur, γ)
m′ ← m1 + m2 + m3 + m4

else
m′ ←∞

if m′ < m then m← m′

return m

31

3. Code-Example

32

Code-Example

Exercise class 06: Binary Trees on Code-Expert
Augmenting a Binary Search Tree

33

	Repetition theory
	2-3 Trees
	Red-Black Trees

	Quadtrees
	Code-Example

