
Datastructures and Algorithms
Generic Programming, Higher-Order Functions, Convex Hull

Adel Gavranovi! — ETH Zürich — 2025

Overview

Learning Objectives
Generic Programming: Higher Order Func-
tions

Function Signature Notation
Convex Hull
Past Exam Questions

n.ethz.ch/~agavranovic

! Material

! Webpage

! Mail

→ 1

1. Follow-up

→ 2

Follow-up from last session

I’m back! (if you liked Tristan’s style, you’re free to move to his class)
Need more assistance?

Visit the Study Center (esp. for the bonus exercise!)
Read Course Script
Check out the Moodle Forum
Write me an e-mail
Always include your code and what you’ve tried thus far

→ 3

Follow-up from last session

I’m back! (if you liked Tristan’s style, you’re free to move to his class)

Need more assistance?

Visit the Study Center (esp. for the bonus exercise!)
Read Course Script
Check out the Moodle Forum
Write me an e-mail
Always include your code and what you’ve tried thus far

→ 3

Follow-up from last session

I’m back! (if you liked Tristan’s style, you’re free to move to his class)
Need more assistance?

Visit the Study Center (esp. for the bonus exercise!)
Read Course Script
Check out the Moodle Forum
Write me an e-mail
Always include your code and what you’ve tried thus far

→ 3

Follow-up from last session

I’m back! (if you liked Tristan’s style, you’re free to move to his class)
Need more assistance?

Visit the Study Center (esp. for the bonus exercise!)
Read Course Script
Check out the Moodle Forum
Write me an e-mail
Always include your code and what you’ve tried thus far

→ 3

2. Feedback regarding code expert

→ 4

General things regarding code expert

Amazing submission in LATEX!
If you spot any issues with my corrections (e.g. too strict, mismatched
rating and feedback), call me out on it ASAP via e-mail
If you’re ever very close to unlocking an exercise and only have
uncorrected points from theory exercises left, then also write me an
e-mail
How di"cult are the (weekly) exercises to you?

→ 5

General things regarding code expert

Amazing submission in LATEX!

If you spot any issues with my corrections (e.g. too strict, mismatched
rating and feedback), call me out on it ASAP via e-mail
If you’re ever very close to unlocking an exercise and only have
uncorrected points from theory exercises left, then also write me an
e-mail
How di"cult are the (weekly) exercises to you?

→ 5

General things regarding code expert

Amazing submission in LATEX!
If you spot any issues with my corrections (e.g. too strict, mismatched
rating and feedback), call me out on it ASAP via e-mail

If you’re ever very close to unlocking an exercise and only have
uncorrected points from theory exercises left, then also write me an
e-mail
How di"cult are the (weekly) exercises to you?

→ 5

General things regarding code expert

Amazing submission in LATEX!
If you spot any issues with my corrections (e.g. too strict, mismatched
rating and feedback), call me out on it ASAP via e-mail
If you’re ever very close to unlocking an exercise and only have
uncorrected points from theory exercises left, then also write me an
e-mail

How di"cult are the (weekly) exercises to you?

→ 5

General things regarding code expert

Amazing submission in LATEX!
If you spot any issues with my corrections (e.g. too strict, mismatched
rating and feedback), call me out on it ASAP via e-mail
If you’re ever very close to unlocking an exercise and only have
uncorrected points from theory exercises left, then also write me an
e-mail
How di"cult are the (weekly) exercises to you?

→ 5

↳ descriptions suck

↳ lound code has issues

↳ someter meler me : which livs are allowed

Any questions regarding code expert on your part?

→ 6

3. Learning Objectives

→ 7

Objectives

↭ Understand what Callables are
↭ Understand what Higher-Order Functions are and what they’re used for
↭ Understand why and how the Jarvis March Algorithm works
↭ Be able to implement the Jarvis March Algorithm

→ 8

Objectives

↭ Understand what Callables are
↭ Understand what Higher-Order Functions are and what they’re used for
↭ Understand why and how the Jarvis March Algorithm works
↭ Be able to implement the Jarvis March Algorithm

→ 8

1

4. Summary

→ 9

Getting on the same page

What did you see in the lectures?

→ 10

Getting on the same page

What did you see in the lectures?

→ 10

5. Generic Programming: Higher Order Func-
tions

→ 11

Motivation

Overarching goal: make code generic, thus reusable

Templates so far: make code parametric in the data it operates on, e.g.

Pair<T> for all types T
print<C> for all iterable containers C

Now: make code parametric in the algorithms it uses, e.g.

filter(container, predicate)
apply(signal, transformation/filter)
leader_election(participants, protocol)
navigation_system(map, shortest_path_algorithm)
Button("Save").onClick(handle_click_event)

→ 12

Motivation

Overarching goal: make code generic, thus reusable
Templates so far: make code parametric in the data it operates on, e.g.

Pair<T> for all types T
print<C> for all iterable containers C

Now: make code parametric in the algorithms it uses, e.g.

filter(container, predicate)
apply(signal, transformation/filter)
leader_election(participants, protocol)
navigation_system(map, shortest_path_algorithm)
Button("Save").onClick(handle_click_event)

→ 12

Motivation

Overarching goal: make code generic, thus reusable
Templates so far: make code parametric in the data it operates on, e.g.

Pair<T> for all types T
print<C> for all iterable containers C

Now: make code parametric in the algorithms it uses, e.g.

filter(container, predicate)
apply(signal, transformation/filter)
leader_election(participants, protocol)
navigation_system(map, shortest_path_algorithm)
Button("Save").onClick(handle_click_event)

→ 12

K

Callables and Higher-Order Functions

// generic filter function
template <typename C, typename P>
C filter(const C& src_data, P pred) {

C data;

for (const auto& e : src_data)
if (pred(e)) {

data.push_back(e);
}

return data;
}

pred must be callable
(applicable, invocable), i.e.,
something function-like
In C++:

free or member function
lambda function
functor (object with
operator())
std::function object
function pointers [not
discussed]

Functions taking or returning functions are called higher-order functions.

→ 13

Callables and Higher-Order Functions

// generic filter function
template <typename C, typename P>
C filter(const C& src_data, P pred) {

C data;

for (const auto& e : src_data)
if (pred(e)) {

data.push_back(e);
}

return data;
}

pred must be callable
(applicable, invocable), i.e.,
something function-like

In C++:
free or member function
lambda function
functor (object with
operator())
std::function object
function pointers [not
discussed]

Functions taking or returning functions are called higher-order functions.

→ 13

↑
C

f() , +C), X

Callables and Higher-Order Functions

// generic filter function
template <typename C, typename P>
C filter(const C& src_data, P pred) {

C data;

for (const auto& e : src_data)
if (pred(e)) {

data.push_back(e);
}

return data;
}

pred must be callable
(applicable, invocable), i.e.,
something function-like
In C++:

free or member function
lambda function
functor (object with
operator())
std::function object
function pointers [not
discussed]

Functions taking or returning functions are called higher-order functions.

→ 13

"range-based for-loop

& ~

X cont
.

- X

↓. e

3x
and it = sta-datbegint ; it+

Callables and Higher-Order Functions

// generic filter function
template <typename C, typename P>
C filter(const C& src_data, P pred) {

C data;

for (const auto& e : src_data)
if (pred(e)) {

data.push_back(e);
}

return data;
}

pred must be callable
(applicable, invocable), i.e.,
something function-like
In C++:

free or member function
lambda function
functor (object with
operator())
std::function object
function pointers [not
discussed]

Functions taking or returning functions are called higher-order functions.

→ 13

C++Functors
// generic filter function
template <typename C, typename P>
C filter(const C& src_data, P pred) {

C data;
for (const auto& e : src_data)

if (pred(e)) data.push_back(e);
return data;

}
// stateful predicate as functor
template <typename T>
struct AtLeast {

T min;
AtLeast(T m): min(m) {};
bool operator()(T i) const {

return min <= i;
}

};

A functor

is an object that implements
operator()
combines state (since an
object) with callability (since
operator())

Objects of type AtLeast<T> are
callable with one T argument.

std::vector<int> data = {-1,0,1,2,-2,4,-3};
selection1 = filter(data, AtLeast(-1));
// = {-1,0,1,2,4}
selection2 = filter(data, AtLeast(4));
// = {4,5}

→ 14

Yo topretoria,

C++Functors
// generic filter function
template <typename C, typename P>
C filter(const C& src_data, P pred) {

C data;
for (const auto& e : src_data)

if (pred(e)) data.push_back(e);
return data;

}
// stateful predicate as functor
template <typename T>
struct AtLeast {

T min;
AtLeast(T m): min(m) {};
bool operator()(T i) const {

return min <= i;
}

};

A functor

is an object that implements
operator()
combines state (since an
object) with callability (since
operator())

Objects of type AtLeast<T> are
callable with one T argument.

std::vector<int> data = {-1,0,1,2,-2,4,-3};
selection1 = filter(data, AtLeast(-1));
// = {-1,0,1,2,4}
selection2 = filter(data, AtLeast(4));
// = {4,5}

→ 14

- - "Memory

-

-

C++Functors
// generic filter function
template <typename C, typename P>
C filter(const C& src_data, P pred) {

C data;
for (const auto& e : src_data)

if (pred(e)) data.push_back(e);
return data;

}
// stateful predicate as functor
template <typename T>
struct AtLeast {

T min;
AtLeast(T m): min(m) {};
bool operator()(T i) const {

return min <= i;
}

};

A functor

is an object that implements
operator()
combines state (since an
object) with callability (since
operator())

Objects of type AtLeast<T> are
callable with one T argument.

std::vector<int> data = {-1,0,1,2,-2,4,-3};
selection1 = filter(data, AtLeast(-1));
// = {-1,0,1,2,4}
selection2 = filter(data, AtLeast(4));
// = {4,5}

→ 14

C++Functors
// generic filter function
template <typename C, typename P>
C filter(const C& src_data, P pred) {

C data;
for (const auto& e : src_data)

if (pred(e)) data.push_back(e);
return data;

}
// stateful predicate as functor
template <typename T>
struct AtLeast {

T min;
AtLeast(T m): min(m) {};
bool operator()(T i) const {

return min <= i;
}

};

A functor

is an object that implements
operator()
combines state (since an
object) with callability (since
operator())

Objects of type AtLeast<T> are
callable with one T argument.

std::vector<int> data = {-1,0,1,2,-2,4,-3};
selection1 = filter(data, AtLeast(-1));
// = {-1,0,1,2,4}
selection2 = filter(data, AtLeast(4));
// = {4,5}

→ 14

bool as man /)

-

-

u

Lambda Expressions Translate to Functors

std::vector<int> data = {-1,0,1,2,-2,4,5,-3};

auto selection1 = filter(data, [](int e) { return -2 <= e; });
auto selection2 = filter(data, [](int e) { return e != 0; });

struct lambda1 {
bool operator()(int e) const {

return -2 <= e;
}

};

struct lambda2 {
bool operator()(int e) const {

return e != 0;
}

};

C++compiler generates
functors from lambda
expressions
Lambdas are not essential,
but “merely” convenient

→ 15

--

Lambda Expressions Translate to Functors

std::vector<int> data = {-1,0,1,2,-2,4,5,-3};

auto selection1 = filter(data, [](int e) { return -2 <= e; });
auto selection2 = filter(data, [](int e) { return e != 0; });

struct lambda1 {
bool operator()(int e) const {

return -2 <= e;
}

};

struct lambda2 {
bool operator()(int e) const {

return e != 0;
}

};

C++compiler generates
functors from lambda
expressions

Lambdas are not essential,
but “merely” convenient

→ 15

Lambda Expressions Translate to Functors

std::vector<int> data = {-1,0,1,2,-2,4,5,-3};

auto selection1 = filter(data, [](int e) { return -2 <= e; });
auto selection2 = filter(data, [](int e) { return e != 0; });

struct lambda1 {
bool operator()(int e) const {

return -2 <= e;
}

};

struct lambda2 {
bool operator()(int e) const {

return e != 0;
}

};

C++compiler generates
functors from lambda
expressions
Lambdas are not essential,
but “merely” convenient

→ 15

Lambda Expression Syntax
Most general shape:

[e1, . . . , en] (T1x1, . . . , Tnxn) -> R { stmt }

captures parameters return
type

body

Captures declare context variables the lambda’s body can access. Syntax examples:

[] no context access

[x] x is copied (and const)
[&x] x is accessible by reference
[x, &y] x is copied, y is referenced
[&] all necessary variables are automatically referenced
[=] all necessary variables are automatically copied
[&, x] all necessary variables are referenced, except x, which is copied
[=, &x] all necessary variables are copied, except x, which is referenced

→ 16

[I
1

Lambda Expression Syntax
Most general shape:

[e1, . . . , en] (T1x1, . . . , Tnxn) -> R { stmt }

captures parameters return
type

body

Captures declare context variables the lambda’s body can access. Syntax examples:

[] no context access
[x] x is copied (and const)

[&x] x is accessible by reference
[x, &y] x is copied, y is referenced
[&] all necessary variables are automatically referenced
[=] all necessary variables are automatically copied
[&, x] all necessary variables are referenced, except x, which is copied
[=, &x] all necessary variables are copied, except x, which is referenced

→ 16

Lambda Expression Syntax
Most general shape:

[e1, . . . , en] (T1x1, . . . , Tnxn) -> R { stmt }

captures parameters return
type

body

Captures declare context variables the lambda’s body can access. Syntax examples:

[] no context access
[x] x is copied (and const)
[&x] x is accessible by reference

[x, &y] x is copied, y is referenced
[&] all necessary variables are automatically referenced
[=] all necessary variables are automatically copied
[&, x] all necessary variables are referenced, except x, which is copied
[=, &x] all necessary variables are copied, except x, which is referenced

→ 16

Lambda Expression Syntax
Most general shape:

[e1, . . . , en] (T1x1, . . . , Tnxn) -> R { stmt }

captures parameters return
type

body

Captures declare context variables the lambda’s body can access. Syntax examples:

[] no context access
[x] x is copied (and const)
[&x] x is accessible by reference
[x, &y] x is copied, y is referenced

[&] all necessary variables are automatically referenced
[=] all necessary variables are automatically copied
[&, x] all necessary variables are referenced, except x, which is copied
[=, &x] all necessary variables are copied, except x, which is referenced

→ 16

Lambda Expression Syntax
Most general shape:

[e1, . . . , en] (T1x1, . . . , Tnxn) -> R { stmt }

captures parameters return
type

body

Captures declare context variables the lambda’s body can access. Syntax examples:

[] no context access
[x] x is copied (and const)
[&x] x is accessible by reference
[x, &y] x is copied, y is referenced
[&] all necessary variables are automatically referenced

[=] all necessary variables are automatically copied
[&, x] all necessary variables are referenced, except x, which is copied
[=, &x] all necessary variables are copied, except x, which is referenced

→ 16

Lambda Expression Syntax
Most general shape:

[e1, . . . , en] (T1x1, . . . , Tnxn) -> R { stmt }

captures parameters return
type

body

Captures declare context variables the lambda’s body can access. Syntax examples:

[] no context access
[x] x is copied (and const)
[&x] x is accessible by reference
[x, &y] x is copied, y is referenced
[&] all necessary variables are automatically referenced
[=] all necessary variables are automatically copied

[&, x] all necessary variables are referenced, except x, which is copied
[=, &x] all necessary variables are copied, except x, which is referenced

→ 16

Lambda Expression Syntax
Most general shape:

[e1, . . . , en] (T1x1, . . . , Tnxn) -> R { stmt }

captures parameters return
type

body

Captures declare context variables the lambda’s body can access. Syntax examples:

[] no context access
[x] x is copied (and const)
[&x] x is accessible by reference
[x, &y] x is copied, y is referenced
[&] all necessary variables are automatically referenced
[=] all necessary variables are automatically copied
[&, x] all necessary variables are referenced, except x, which is copied

[=, &x] all necessary variables are copied, except x, which is referenced

→ 16

Lambda Expression Syntax
Most general shape:

[e1, . . . , en] (T1x1, . . . , Tnxn) -> R { stmt }

captures parameters return
type

body

Captures declare context variables the lambda’s body can access. Syntax examples:

[] no context access
[x] x is copied (and const)
[&x] x is accessible by reference
[x, &y] x is copied, y is referenced
[&] all necessary variables are automatically referenced
[=] all necessary variables are automatically copied
[&, x] all necessary variables are referenced, except x, which is copied
[=, &x] all necessary variables are copied, except x, which is referenced→ 16

Functors

1. Write down the functor that
corresponds to the lambda

2. Use the functor in the filter()
expression

int count = 0;
int min = 3;
std::vector<int> data = {4,-2,0};
data = filter(data, [&, min](int e) {

++count; return min <= e;
});

Solution
class lambda1 {

int& count;
const int min;

public:
lambda1(int& c, int m):

count(c), min(m) {}
bool operator()(int e) const {

++count;
return min <= e;

}
};

int count = 0;
int min = 3;
std::vector<int> data = {4,-2,0};

data = filter(data, lambda1(count, min));

→ 17

& reaching scape of capture

(
Class lambal[int Wil

in
int cant

Functors

1. Write down the functor that
corresponds to the lambda

2. Use the functor in the filter()
expression

int count = 0;
int min = 3;
std::vector<int> data = {4,-2,0};
data = filter(data, [&, min](int e) {

++count; return min <= e;
});

Solution
class lambda1 {

int& count;
const int min;

public:
lambda1(int& c, int m):

count(c), min(m) {}
bool operator()(int e) const {

++count;
return min <= e;

}
};

int count = 0;
int min = 3;
std::vector<int> data = {4,-2,0};

data = filter(data, lambda1(count, min));

→ 17

*

-
-

*

: C
- -

ut
11 caut = = 3 ;

my
-

Functors

Observe that the lambda now uses the auto type placeholder for its
argument

data = filter(data, [](auto e) { return 0 <= e; });

Question: How is this reflected by the generated functor?
Solution:

class lambda2 {
public:

lambda2() {}

template <typename T>
bool operator()(T e) const {

return 0 <= e;
}

};

→ 18

Functors

Observe that the lambda now uses the auto type placeholder for its
argument

data = filter(data, [](auto e) { return 0 <= e; });
Question: How is this reflected by the generated functor?

Solution:
class lambda2 {
public:

lambda2() {}

template <typename T>
bool operator()(T e) const {

return 0 <= e;
}

};

→ 18

Functors

Observe that the lambda now uses the auto type placeholder for its
argument

data = filter(data, [](auto e) { return 0 <= e; });
Question: How is this reflected by the generated functor?
Solution:

class lambda2 {
public:

lambda2() {}

template <typename T>
bool operator()(T e) const {

return 0 <= e;
}

};

→ 18

I

→ 19

x

5. Generic Programming: Higher Order Functions

5.1. Function Signature Notation
not exam relevant

→ 19

Function Signature Notation

In the context of functional programming, function signatures are often
expressed in a mathematics-inspired notation

Convention today: upper-case letters denote type parameters, lower-case
names denote concrete types
Examples:

f1 : A ↑ int function from any type to integer
f2 : A ↓ A ↓ A ↑ bool function from three A’s to boolean
f3 : A ↓ (A ↑ B) ↑ B "higher-order function" (with two arguments)
f4 : vec<A> ↓ (A ↑ B) ↑ vec higher-order function involving vectors
f5 : (A ↓ A ↑ B) ↓ A ↑ ((A ↑ B) ↑ bool) taking and returning a
function

→ 20

Function Signature Notation

In the context of functional programming, function signatures are often
expressed in a mathematics-inspired notation
Convention today: upper-case letters denote type parameters, lower-case
names denote concrete types

Examples:

f1 : A ↑ int function from any type to integer
f2 : A ↓ A ↓ A ↑ bool function from three A’s to boolean
f3 : A ↓ (A ↑ B) ↑ B "higher-order function" (with two arguments)
f4 : vec<A> ↓ (A ↑ B) ↑ vec higher-order function involving vectors
f5 : (A ↓ A ↑ B) ↓ A ↑ ((A ↑ B) ↑ bool) taking and returning a
function

→ 20

Function Signature Notation

In the context of functional programming, function signatures are often
expressed in a mathematics-inspired notation
Convention today: upper-case letters denote type parameters, lower-case
names denote concrete types
Examples:

f1 : A ↑ int function from any type to integer
f2 : A ↓ A ↓ A ↑ bool function from three A’s to boolean
f3 : A ↓ (A ↑ B) ↑ B "higher-order function" (with two arguments)
f4 : vec<A> ↓ (A ↑ B) ↑ vec higher-order function involving vectors
f5 : (A ↓ A ↑ B) ↓ A ↑ ((A ↑ B) ↑ bool) taking and returning a
function

→ 20

Function Signature Notation

In the context of functional programming, function signatures are often
expressed in a mathematics-inspired notation
Convention today: upper-case letters denote type parameters, lower-case
names denote concrete types
Examples:

f1 : A ↑ int function from any type to integer

f2 : A ↓ A ↓ A ↑ bool function from three A’s to boolean
f3 : A ↓ (A ↑ B) ↑ B "higher-order function" (with two arguments)
f4 : vec<A> ↓ (A ↑ B) ↑ vec higher-order function involving vectors
f5 : (A ↓ A ↑ B) ↓ A ↑ ((A ↑ B) ↑ bool) taking and returning a
function

→ 20

Function Signature Notation

In the context of functional programming, function signatures are often
expressed in a mathematics-inspired notation
Convention today: upper-case letters denote type parameters, lower-case
names denote concrete types
Examples:

f1 : A ↑ int function from any type to integer
f2 : A ↓ A ↓ A ↑ bool function from three A’s to boolean

f3 : A ↓ (A ↑ B) ↑ B "higher-order function" (with two arguments)
f4 : vec<A> ↓ (A ↑ B) ↑ vec higher-order function involving vectors
f5 : (A ↓ A ↑ B) ↓ A ↑ ((A ↑ B) ↑ bool) taking and returning a
function

→ 20

Function Signature Notation

In the context of functional programming, function signatures are often
expressed in a mathematics-inspired notation
Convention today: upper-case letters denote type parameters, lower-case
names denote concrete types
Examples:

f1 : A ↑ int function from any type to integer
f2 : A ↓ A ↓ A ↑ bool function from three A’s to boolean
f3 : A ↓ (A ↑ B) ↑ B "higher-order function" (with two arguments)

f4 : vec<A> ↓ (A ↑ B) ↑ vec higher-order function involving vectors
f5 : (A ↓ A ↑ B) ↓ A ↑ ((A ↑ B) ↑ bool) taking and returning a
function

→ 20

Function Signature Notation

In the context of functional programming, function signatures are often
expressed in a mathematics-inspired notation
Convention today: upper-case letters denote type parameters, lower-case
names denote concrete types
Examples:

f1 : A ↑ int function from any type to integer
f2 : A ↓ A ↓ A ↑ bool function from three A’s to boolean
f3 : A ↓ (A ↑ B) ↑ B "higher-order function" (with two arguments)
f4 : vec<A> ↓ (A ↑ B) ↑ vec higher-order function involving vectors

f5 : (A ↓ A ↑ B) ↓ A ↑ ((A ↑ B) ↑ bool) taking and returning a
function

→ 20

Function Signature Notation

In the context of functional programming, function signatures are often
expressed in a mathematics-inspired notation
Convention today: upper-case letters denote type parameters, lower-case
names denote concrete types
Examples:

f1 : A ↑ int function from any type to integer
f2 : A ↓ A ↓ A ↑ bool function from three A’s to boolean
f3 : A ↓ (A ↑ B) ↑ B "higher-order function" (with two arguments)
f4 : vec<A> ↓ (A ↑ B) ↑ vec higher-order function involving vectors
f5 : (A ↓ A ↑ B) ↓ A ↑ ((A ↑ B) ↑ bool) taking and returning a
function

→ 20

Function Signature Notation: Example 1

Task: Write down a function with signature f2 : A ↓ A ↑ bool

Solution:
template <typename A>
bool eq(A a1, A a2) {

return a1 == a2;
}

→ 21

Function Signature Notation: Example 1

Task: Write down a function with signature f2 : A ↓ A ↑ bool
Solution:
template <typename A>
bool eq(A a1, A a2) {

return a1 == a2;
}

→ 21

Function Signature Notation: Example 2

Task: Write down a function with signature f2 : A ↓ (A ↑ B) ↑ B

Solution 1:
template <typename A, typename F>
auto apply1(A a, F a_to_b) {

return a_to_b(a);
}

int i1 = apply1('a', [](char c) { return c - 65; });
Observations

type parameter B is only implicitly given, as F’s return type
template type parameters inferred at call-site

→ 22

Function Signature Notation: Example 2

Task: Write down a function with signature f2 : A ↓ (A ↑ B) ↑ B

Solution 1:
template <typename A, typename F>
auto apply1(A a, F a_to_b) {

return a_to_b(a);
}

int i1 = apply1('a', [](char c) { return c - 65; });

Observations

type parameter B is only implicitly given, as F’s return type
template type parameters inferred at call-site

→ 22

Function Signature Notation: Example 2

Task: Write down a function with signature f2 : A ↓ (A ↑ B) ↑ B

Solution 1:
template <typename A, typename F>
auto apply1(A a, F a_to_b) {

return a_to_b(a);
}

int i1 = apply1('a', [](char c) { return c - 65; });
Observations

type parameter B is only implicitly given, as F’s return type
template type parameters inferred at call-site

→ 22

Function Signature Notation: Example 2

Task: Write down a function with signature f2 : A ↓ (A ↑ B) ↑ B

Solution 2:
template <typename A, typename B>
B apply2(A a, std::function<B(A)> a_to_b) {

return a_to_b(a);
}

int i2 = apply2('a', std::function([](char c) { return c - 65; }));
Observations

type parameter B is explicit
but we need to wrap the lambda in a std::function
template type parameters inferred at call-site

→ 23

Function Signature Notation: Example 2

Task: Write down a function with signature f2 : A ↓ (A ↑ B) ↑ B

Solution 2:
template <typename A, typename B>
B apply2(A a, std::function<B(A)> a_to_b) {

return a_to_b(a);
}

int i2 = apply2('a', std::function([](char c) { return c - 65; }));

Observations

type parameter B is explicit
but we need to wrap the lambda in a std::function
template type parameters inferred at call-site

→ 23

Function Signature Notation: Example 2

Task: Write down a function with signature f2 : A ↓ (A ↑ B) ↑ B

Solution 2:
template <typename A, typename B>
B apply2(A a, std::function<B(A)> a_to_b) {

return a_to_b(a);
}

int i2 = apply2('a', std::function([](char c) { return c - 65; }));
Observations

type parameter B is explicit
but we need to wrap the lambda in a std::function
template type parameters inferred at call-site

→ 23

Function Signature Notation: Example 2

Task: Write down a function with signature f2 : A ↓ (A ↑ B) ↑ B

Solution Attempt 3
template <typename A, typename F, typename B>
B apply3(A a, F a_to_b) {

return a_to_b(a);
}

int i3 = apply3<char, ???, int>('a', [](char c) { return c - 65; });
Observations

type parameter B is explicit
but not directly connected to return type of F

Problem: At call-site, B can’t be inferred. We can explicitly instantiate B -
but now we’d have to do that for F as well, which we can’t.

→ 24

Function Signature Notation: Example 2

Task: Write down a function with signature f2 : A ↓ (A ↑ B) ↑ B

Solution Attempt 3
template <typename A, typename F, typename B>
B apply3(A a, F a_to_b) {

return a_to_b(a);
}

int i3 = apply3<char, ???, int>('a', [](char c) { return c - 65; });

Observations
type parameter B is explicit
but not directly connected to return type of F

Problem: At call-site, B can’t be inferred. We can explicitly instantiate B -
but now we’d have to do that for F as well, which we can’t.

→ 24

Function Signature Notation: Example 2

Task: Write down a function with signature f2 : A ↓ (A ↑ B) ↑ B

Solution Attempt 3
template <typename A, typename F, typename B>
B apply3(A a, F a_to_b) {

return a_to_b(a);
}

int i3 = apply3<char, ???, int>('a', [](char c) { return c - 65; });
Observations

type parameter B is explicit
but not directly connected to return type of F

Problem: At call-site, B can’t be inferred. We can explicitly instantiate B -
but now we’d have to do that for F as well, which we can’t.

→ 24

Function Signature Notation: Example 2

Task: Write down a function with signature f2 : A ↓ (A ↑ B) ↑ B

Solution Attempt 3
template <typename A, typename F, typename B>
B apply3(A a, F a_to_b) {

return a_to_b(a);
}

int i3 = apply3<char, ???, int>('a', [](char c) { return c - 65; });
Observations

type parameter B is explicit
but not directly connected to return type of F

Problem: At call-site, B can’t be inferred. We can explicitly instantiate B -
but now we’d have to do that for F as well, which we can’t.

→ 24

Function Signature Notation: Example 3

Task: Write down a function with signature
f2 : A ↓ (A ↓ A ↑ B) ↑ (A ↑ B)

Solution:
template <typename A, typename F>
auto bind(A a1, F aa_to_b) {

return [=](A a2) { return aa_to_b(a1, a2); };
}

std::string planet = "Mars";
auto f = bind(planet, [](auto s1, auto s2) { return s1 + s2; });

Question: how to use f?
Answer:
std::cout << f(" is the fourth planet from the sun.");

→ 25

Function Signature Notation: Example 3

Task: Write down a function with signature
f2 : A ↓ (A ↓ A ↑ B) ↑ (A ↑ B)
Solution:
template <typename A, typename F>
auto bind(A a1, F aa_to_b) {

return [=](A a2) { return aa_to_b(a1, a2); };
}

std::string planet = "Mars";
auto f = bind(planet, [](auto s1, auto s2) { return s1 + s2; });

Question: how to use f?
Answer:
std::cout << f(" is the fourth planet from the sun.");

→ 25

Function Signature Notation: Example 3

Task: Write down a function with signature
f2 : A ↓ (A ↓ A ↑ B) ↑ (A ↑ B)
Solution:
template <typename A, typename F>
auto bind(A a1, F aa_to_b) {

return [=](A a2) { return aa_to_b(a1, a2); };
}

std::string planet = "Mars";
auto f = bind(planet, [](auto s1, auto s2) { return s1 + s2; });

Question: how to use f?

Answer:
std::cout << f(" is the fourth planet from the sun.");

→ 25

Function Signature Notation: Example 3

Task: Write down a function with signature
f2 : A ↓ (A ↓ A ↑ B) ↑ (A ↑ B)
Solution:
template <typename A, typename F>
auto bind(A a1, F aa_to_b) {

return [=](A a2) { return aa_to_b(a1, a2); };
}

std::string planet = "Mars";
auto f = bind(planet, [](auto s1, auto s2) { return s1 + s2; });

Question: how to use f?
Answer:
std::cout << f(" is the fourth planet from the sun.");

→ 25

Function Signature Notation: Example 3

Task: Write down a function with signature
f2 : A ↓ (A ↓ A ↑ B) ↑ (A ↑ B)
Solution:
template <typename A, typename F>
auto bind(A a1, F aa_to_b) {

return [=](A a2) { return aa_to_b(a1, a2); };
}

std::string planet = "Mars";
auto f = bind(planet, [](auto s1, auto s2) { return s1 + s2; });

Question: What would happen if the capture were [&] instead of [=]?
Answer: The returned lambda would capture argument a1 by reference,
but a1 is removed from memory when the call to bind() terminates.
Calling f would thus result in undefined behaviour.

→ 26

Function Signature Notation: Example 3

Task: Write down a function with signature
f2 : A ↓ (A ↓ A ↑ B) ↑ (A ↑ B)
Solution:
template <typename A, typename F>
auto bind(A a1, F aa_to_b) {

return [=](A a2) { return aa_to_b(a1, a2); };
}

std::string planet = "Mars";
auto f = bind(planet, [](auto s1, auto s2) { return s1 + s2; });

Question: What would happen if the capture were [&] instead of [=]?
Answer: The returned lambda would capture argument a1 by reference,
but a1 is removed from memory when the call to bind() terminates.
Calling f would thus result in undefined behaviour.

→ 26

Function Signature Notation: Example 3

Task: Write down a function with signature
f2 : A ↓ (A ↓ A ↑ B) ↑ (A ↑ B)
Solution:
template <typename A, typename F>
auto bind(A a1, F aa_to_b) {

return [=](A a2) { return aa_to_b(a1, a2); };
}

std::string planet = "Mars";
auto f = bind(planet, [](auto s1, auto s2) { return s1 + s2; });
Question: What would happen if the capture were [&] instead of [=]?

Answer: The returned lambda would capture argument a1 by reference,
but a1 is removed from memory when the call to bind() terminates.
Calling f would thus result in undefined behaviour.

→ 26

Function Signature Notation: Example 3

Task: Write down a function with signature
f2 : A ↓ (A ↓ A ↑ B) ↑ (A ↑ B)
Solution:
template <typename A, typename F>
auto bind(A a1, F aa_to_b) {

return [=](A a2) { return aa_to_b(a1, a2); };
}

std::string planet = "Mars";
auto f = bind(planet, [](auto s1, auto s2) { return s1 + s2; });
Question: What would happen if the capture were [&] instead of [=]?

Answer: The returned lambda would capture argument a1 by reference,
but a1 is removed from memory when the call to bind() terminates.
Calling f would thus result in undefined behaviour.

→ 26

Function Signature Notation: Example 3

Task: Write down a function with signature
f2 : A ↓ (A ↓ A ↑ B) ↑ (A ↑ B)
Solution:
template <typename A, typename F>
auto bind(A a1, F aa_to_b) {

return [=](A a2) { return aa_to_b(a1, a2); };
}

std::string planet = "Mars";
auto f = bind(planet, [](auto s1, auto s2) { return s1 + s2; });
Question: What would happen if the capture were [&] instead of [=]?
Answer: The returned lambda would capture argument a1 by reference,
but a1 is removed from memory when the call to bind() terminates.
Calling f would thus result in undefined behaviour.

→ 26

A Prominent Higher Order Function
Consider the function m : vec<A> ↓ (A ↑ B) ↑ vec

Given the signature above, what could function m do?
Visual hint:

a1 a2 · · · ai · · · an

b1 b2 · · · bi · · · bn

f f f f

Task: Implement the function in C++
Solution:
template <typename A, typename B>
std::vector map(std::vector<A> as, std::function<B(A)> f) {

std::vector result;
for (const auto& a : as)

result.push_back(f(a));
return result;

}

→ 27

A Prominent Higher Order Function
Consider the function m : vec<A> ↓ (A ↑ B) ↑ vec
Given the signature above, what could function m do?

Visual hint:
a1 a2 · · · ai · · · an

b1 b2 · · · bi · · · bn

f f f f

Task: Implement the function in C++
Solution:
template <typename A, typename B>
std::vector map(std::vector<A> as, std::function<B(A)> f) {

std::vector result;
for (const auto& a : as)

result.push_back(f(a));
return result;

}

→ 27

A Prominent Higher Order Function
Consider the function m : vec<A> ↓ (A ↑ B) ↑ vec
Given the signature above, what could function m do?
Visual hint:

a1 a2 · · · ai · · · an

b1 b2 · · · bi · · · bn

f f f f

Task: Implement the function in C++
Solution:
template <typename A, typename B>
std::vector map(std::vector<A> as, std::function<B(A)> f) {

std::vector result;
for (const auto& a : as)

result.push_back(f(a));
return result;

}

→ 27

A Prominent Higher Order Function
Consider the function m : vec<A> ↓ (A ↑ B) ↑ vec
Given the signature above, what could function m do?
Visual hint:

a1 a2 · · · ai · · · an

b1 b2 · · · bi · · · bn

f f f f

Task: Implement the function in C++

Solution:
template <typename A, typename B>
std::vector map(std::vector<A> as, std::function<B(A)> f) {

std::vector result;
for (const auto& a : as)

result.push_back(f(a));
return result;

}

→ 27

A Prominent Higher Order Function
Consider the function m : vec<A> ↓ (A ↑ B) ↑ vec
Given the signature above, what could function m do?
Visual hint:

a1 a2 · · · ai · · · an

b1 b2 · · · bi · · · bn

f f f f

Task: Implement the function in C++
Solution:
template <typename A, typename B>
std::vector map(std::vector<A> as, std::function<B(A)> f) {

std::vector result;
for (const auto& a : as)

result.push_back(f(a));
return result;

}→ 27

6. Convex Hull

→ 28

Convex Hull
Subset S of a real vector space is called convex, if for all a, b ↔ S and all
ω ↔ [0, 1]:

ωa + (1 ↗ ω)b ↔ S

a

b

S

→ 29

lo
not cut)

Convex Hull
Convex Hull H(Q) of a set Q of points: smallest convex polygon P such that
each point of Q is on P or in the interior of P .

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

→ 30

- Y
-

Convex Hull
Convex Hull H(Q) of a set Q of points: smallest convex polygon P such that
each point of Q is on P or in the interior of P .

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

→ 30

-C

Properties of line segments

Cross-Product of two vectors p1 = (x1, y1),
p2 = (x2, y2) in the plane

p1 ↓ p2 = det
[

x1 x2
y1 y2

]

= x1y2 ↗ x2y1

Signed area of the parallelogram

+

↗

p2

p1

p1 + p2

p→
2

p1 + p→
2

y

x

→ 31

#

·
11 I -

·

Turning direction

p0

p1

p2

p0

p1

p2

to the left:
(p1 ↗ p0) ↓ (p2 ↗ p0) > 0

to the right:
(p1 ↗ p0) ↓ (p2 ↗ p0) < 0

→ 32

If

Jarvis March / Gift Wrapping algorithm

1. Start with an extremal point (e.g. lowest point) p = p0

2. Search point q, such that pq is a line to the right of all other points (or
other points are on this line closer to p.

3. Continue with p → q at (2) until p = p0.

→ 33

-

Illustration Jarvis

p0

p1

p2

p3 p4

1. Set H ↑ ↘.
2. Find the lowest point q.
3. Find the rightmost point p, from

q’s point of view
4. Add p to H .
5. Set q → p and repeat from step 3
until q is the lowest point

6. H is the convex hull.

→ 34

Illustration Jarvis

p0

p1

p2

p3 p4

1. Set H ↑ ↘.
2. Find the lowest point q.
3. Find the rightmost point p, from

q’s point of view

4. Add p to H .
5. Set q → p and repeat from step 3
until q is the lowest point

6. H is the convex hull.

→ 34

↓ *

Illustration Jarvis

p0

p1

p2

p3 p4

1. Set H ↑ ↘.
2. Find the lowest point q.
3. Find the rightmost point p, from

q’s point of view
4. Add p to H .

5. Set q → p and repeat from step 3
until q is the lowest point

6. H is the convex hull.

→ 34

-

Illustration Jarvis

p0

p1

p2

p3 p4

1. Set H ↑ ↘.
2. Find the lowest point q.
3. Find the rightmost point p, from

q’s point of view
4. Add p to H .
5. Set q → p and repeat from step 3
until q is the lowest point

6. H is the convex hull.

→ 34

Illustration Jarvis

p0

p1

p2

p3 p4

1. Set H ↑ ↘.
2. Find the lowest point q.
3. Find the rightmost point p, from

q’s point of view
4. Add p to H .
5. Set q → p and repeat from step 3
until q is the lowest point

6. H is the convex hull.

→ 34

,pripet
..

Illustration Jarvis

p0

p1

p2

p3 p4

1. Set H ↑ ↘.
2. Find the lowest point q.
3. Find the rightmost point p, from

q’s point of view
4. Add p to H .
5. Set q → p and repeat from step 3
until q is the lowest point

6. H is the convex hull.

→ 34

Illustration Jarvis

p0

p1

p2

p3 p4

1. Set H ↑ ↘.
2. Find the lowest point q.
3. Find the rightmost point p, from

q’s point of view
4. Add p to H .
5. Set q → p and repeat from step 3
until q is the lowest point

6. H is the convex hull.

→ 34

Illustration Jarvis

p0

p1

p2

p3 p4

1. Set H ↑ ↘.
2. Find the lowest point q.
3. Find the rightmost point p, from

q’s point of view
4. Add p to H .
5. Set q → p and repeat from step 3
until q is the lowest point

6. H is the convex hull.

→ 34

Illustration Jarvis

p0

p1

p2

p3 p4

1. Set H ↑ ↘.
2. Find the lowest point q.
3. Find the rightmost point p, from

q’s point of view
4. Add p to H .
5. Set q → p and repeat from step 3
until q is the lowest point

6. H is the convex hull.

→ 34

Graham Scan

Graham Scan: Another algorithm that computes the convex hull
See the implementation in the lecture slides
Time complexity:

Jarvis March: O(h · n) where h is the number of corner points on the convex
hull
Graham Scan: O(n log n)

Question: When does Jarvis March perform better?

Answer: Jarvis March is better when h is small compared to n, as its time
complexity depends on the number of corner points on the convex hull.
Comment: Chan’s algorithm improves on both, but is not taught in this
course.

→ 35

·
log(n)h = 3

Graham Scan

Graham Scan: Another algorithm that computes the convex hull
See the implementation in the lecture slides
Time complexity:

Jarvis March: O(h · n) where h is the number of corner points on the convex
hull
Graham Scan: O(n log n)

Question: When does Jarvis March perform better?
Answer: Jarvis March is better when h is small compared to n, as its time
complexity depends on the number of corner points on the convex hull.
Comment: Chan’s algorithm improves on both, but is not taught in this
course.

→ 35

7. Past Exam Questions

→ 36

Past Exam 2020: Task 1d)

→ 37

Past Exam 2020: Task 1d) – Solution

→ 38

Past Exam 2020: Task 1e)

→ 39

Past Exam 2020: Task 1e) – Solution

→ 40

8. Outro

→ 41

General Questions?

→ 42

One more thing. . .

→ 43

→ 44

See you next time!

Have a nice week!

→ 45

me : 6011081

:

