
Datastructures and Algorithms
Sweepline, Closest Point Pair DFS, BFS, Shortest Path Problems

Adel Gavranovi! — ETH Zürich — 2025

Overview

Learning Objectives
Geometric Algorithms

Sweepline
Geometric Divide & Conquer: Closest
Point Pair

Graphs
Graphs: DFS and BFS
Appendix: Real World Shortest Path
Problems

n.ethz.ch/~agavranovic

! Material

! Webpage

! Mail

→ 1

1. Follow-up

→ 2

Follow-up from last session

Bonus Exercise I “Image Segmentation”
Try to get your implementation to run in O(n) (you know how!)

[p. 17] Apparent change of member variable despite const keyword
Amazingly, const functions can change reference types (to some
degree)!
Since it’s a reference to a variable (count) outside of the class, the
function is allowed to change it! (I think this has something to do with
the fact that references are really just pointers in disguise but don’t
quote me on this)

→ 3

Follow-up from last session

Bonus Exercise I “Image Segmentation”

Try to get your implementation to run in O(n) (you know how!)
[p. 17] Apparent change of member variable despite const keyword

Amazingly, const functions can change reference types (to some
degree)!
Since it’s a reference to a variable (count) outside of the class, the
function is allowed to change it! (I think this has something to do with
the fact that references are really just pointers in disguise but don’t
quote me on this)

→ 3

Follow-up from last session

Bonus Exercise I “Image Segmentation”
Try to get your implementation to run in O(n) (you know how!)

[p. 17] Apparent change of member variable despite const keyword
Amazingly, const functions can change reference types (to some
degree)!
Since it’s a reference to a variable (count) outside of the class, the
function is allowed to change it! (I think this has something to do with
the fact that references are really just pointers in disguise but don’t
quote me on this)

→ 3

Follow-up from last session

Bonus Exercise I “Image Segmentation”
Try to get your implementation to run in O(n) (you know how!)

[p. 17] Apparent change of member variable despite const keyword

Amazingly, const functions can change reference types (to some
degree)!
Since it’s a reference to a variable (count) outside of the class, the
function is allowed to change it! (I think this has something to do with
the fact that references are really just pointers in disguise but don’t
quote me on this)

→ 3

#⑮ count

f

Follow-up from last session

Bonus Exercise I “Image Segmentation”
Try to get your implementation to run in O(n) (you know how!)

[p. 17] Apparent change of member variable despite const keyword
Amazingly, const functions can change reference types (to some
degree)!
Since it’s a reference to a variable (count) outside of the class, the
function is allowed to change it! (I think this has something to do with
the fact that references are really just pointers in disguise but don’t
quote me on this)

→ 3

Follow-up from last session

[p. 31] 2D cross product (↑)
It’s not a vector, since we defined it via a determinant

→ 4

Follow-up from last session

[p. 31] 2D cross product (↑)

It’s not a vector, since we defined it via a determinant

→ 4

Follow-up from last session

[p. 31] 2D cross product (↑)
It’s not a vector, since we defined it via a determinant

→ 4

2. Feedback regarding code expert

→ 5

General things regarding code expert

→ 6

Any questions regarding code expert on your part?

→ 7

> couldn't find which one was meant...

1 Task Descriple
Cold exam Q

2 ↳ German Descriptin
nahr no

sense

3. Learning Objectives

→ 8

Objectives

↭ Understand the shown sweepline-based algorithm
↭ Understand the shown recursive algorithm for finding the shortest pair
distance

↭ Know when which representation for graphs is more suitable and why

→ 9

Objectives

↭ Understand the shown sweepline-based algorithm
↭ Understand the shown recursive algorithm for finding the shortest pair
distance

↭ Know when which representation for graphs is more suitable and why

→ 9

-

4. Summary

→ 10

Getting on the same page

How far did you get with graphs?
Representations of Graphs?
BFS, DFS?

→ 11

Getting on the same page

How far did you get with graphs?
Representations of Graphs?
BFS, DFS?

→ 11

-

5. Geometric Algorithms

→ 12

Overlaps of two intervals

Two intervals (l, r) and (s, e) overlap if

l r

s e

l ↓ s < r

l r

es

l < e ↓ r

l r

es

or s ↓ l < r ↓ e

↔ We can check in constant time whether two intervals intersect.

→ 13

1-1

Overlaps of two intervals

Two intervals (l, r) and (s, e) overlap if

l r

s e

l ↓ s < r

l r

es

l < e ↓ r

l r

es

or s ↓ l < r ↓ e

↔ We can check in constant time whether two intervals intersect.

→ 13

~

Overlaps of two intervals

Two intervals (l, r) and (s, e) overlap if

l r

s e

l ↓ s < r

l r

es

l < e ↓ r

l r

es

or s ↓ l < r ↓ e

↔ We can check in constant time whether two intervals intersect.

→ 13

Overlaps of two intervals

Two intervals (l, r) and (s, e) overlap if

l r

s e

l ↓ s < r

l r

es

l < e ↓ r

l r

es

or s ↓ l < r ↓ e

↔ We can check in constant time whether two intervals intersect.

→ 13

#

Overlaps of two intervals

Two intervals (l, r) and (s, e) overlap if

l r

s e

l ↓ s < r

l r

es

l < e ↓ r

l r

es

or s ↓ l < r ↓ e

↔ We can check in constant time whether two intervals intersect.

→ 13

Q

Intersection of two line segments
How to figure out whether two segments are intersecting without actually
computing the intersection points (division!)?

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2
p3

p4

Intersection: p1
and p2 opposite
w.r.t p3p4 and p3, p4
opposite w.r.t. p1p2

No intersection: p1
and p2 on the same
side of p3p4

Intersection: p1 on
p3p4No intersection: p3

and p4 on the same
side of p1p2

→ 14

2

-

Intersection of two line segments
How to figure out whether two segments are intersecting without actually
computing the intersection points (division!)?

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2
p3

p4

Intersection: p1
and p2 opposite
w.r.t p3p4 and p3, p4
opposite w.r.t. p1p2

No intersection: p1
and p2 on the same
side of p3p4

Intersection: p1 on
p3p4No intersection: p3

and p4 on the same
side of p1p2

→ 14

&

↑

Intersection of two line segments
Part (a)

Intersection or no intersection?

→ 15

Intersection of two line segments
Part (a)

Intersection or no intersection?

Intersection
p1, p2 are opposite w.r.t p4p3,
and p3, p4 are opposite w.r.t. p1p2.

→ 16

/

-
&

..
↑

>

Intersection of two line segments
Part (a) (p3 ↗ p4) ↑ (p1 ↗ p4) =

= ((0, 4) ↗ (↗3, ↗5)) ↑ ((↗3, 0) ↗

(↗3, ↗5)) = (3, 9)↑(0, 5) = det
[

3 0
9 5

]

= (3)(5) ↗ (0)(9) = 15 > 0.

(p3 ↗ p4) ↑ (p2 ↗ p4) =
= ((0, 4) ↗ (↗3, ↗5)) ↑ ((0, ↗3) ↗

(↗3, ↗5))
= (3, 9) ↑ (3, 2) = det

[
3 3
9 2

]

= (3)(2) ↗ (3)(9) = ↗21 < 0.

→ 17

↑ I C
2

op

Intersection of two line segments
Part (a) and (p2 ↗ p1) ↑ (p3 ↗ p1) =

= ((0, ↗3) ↗ (↗3, 0)) ↑ ((0, 4) ↗ (↗3, 0))
= (3, ↗3) ↑ (3, 4) = det

[
3 3

↗3 4

]

= (3)(4) ↗ (3)(↗3) = 21 > 0.

(p2 ↗ p1) ↑ (p4 ↗ p1) =
= ((0, ↗3) ↗ (↗3, 0)) ↑ ((↗3, ↗5) ↗

(↗3, 0))
= (3, ↗3) ↑ (0, ↗5) = det

[
3 0

↗3 ↗5

]

= (3)(↗5) ↗ (0)(↗3) = ↗15 < 0.

→ 18

G

u

Intersection of two line segments
Part (b)

Intersection or no intersection?

→ 19

Intersection of two line segments
Part (b)

Intersection or no intersection?

Intersection
p4 is on p1p2 for two reasons.

→ 20

IP

0

Intersection of two line segments
Part (b)

First,
(p2 ↗ p1) ↑ (p4 ↗ p1) =
= ((4, ↗4) ↗ (↗2, ↗2)) ↑ ((1, ↗3) ↗

(↗2, ↗2))
= (6, ↗2) ↑ (3, ↗1) = det

[
6 3

↗2 ↗1

]

= (6)(↗1) ↗ (3)(↗2) = 0.

→ 21

Intersection of two line segments
Part (b)

But this only shows that p4 is in the
line created by p1p2.
To conclude that p4 is in p1p2, note that
↗2 = p1[0] ↓ 1 = p4[0] ↓ 4 = p2[0]
and
↗4 = p2[1] ↓ ↗3 = p4[1] ↓ ↗2 = p1[1].

→ 22

-
we
#

-

Intersection of two line segments
Part (c)

Intersection or no intersection?

→ 23

--
if (anansident

(
&

T
·

Intersection of two line segments
Part (c)

Intersection or no intersection?

No Intersection
p3 and p4 are on the same side of p1p2.

→ 24

Intersection of two line segments
Part (c)

(p2 ↗ p1) ↑ (p3 ↗ p1) =
= ((5, 4)↗(↗3, 2))↑((↗3, ↗5)↗(↗3, 2))
= (8, 2) ↑ (0, ↗7) = det

[
8 0
2 ↗7

]

= (8)(↗7) ↗ (0)(2) = ↗56 < 0.

(p2 ↗ p1) ↑ (p4 ↗ p1) =
= ((5, 4) ↗ (↗3, 2)) ↑ ((2, 1) ↗ (↗3, 2))
= (8, 2) ↑ (5, ↗1) = det

[
8 5
2 ↗1

]

= (8)(↗1) ↗ (5)(2) = ↗18 < 0.

→ 25

Intersection of two line segments
Part (d)

Intersection or no intersection?

→ 26

8 -
-

Intersection of two line segments
Part (d)

Intersection or no intersection?

No Intersection
p1 and p2 are on the same side of p4p3.

→ 27

Intersection of two line segments
Part (d) (p3 ↗ p4) ↑ (p1 ↗ p4) =

= ((5, 2)↗(↗5, ↗4))↑((0, 4)↗(↗5, ↗4))
= (10, 6) ↑ (5, 8) = det

[
10 5
6 8

]

= (10)(8) ↗ (5)(6) = 60 > 0.

(p3 ↗ p4) ↑ (p2 ↗ p4) =
= ((5, 2) ↗ (↗5, ↗4)) ↑ ((↗2, ↗1) ↗

(↗5, ↗4))
= (10, 6) ↑ (3, 3) = det

[
10 3
6 3

]

= (10)(3) ↗ (6)(3) = 12 > 0.

→ 28

5. Geometric Algorithms

5.1. Sweepline

→ 29

Preparation: Horizontal Line Segments

i1
i2

i3

i4

i5

i6

i7

Questions:
What is the maximum number of overlapping segments?

Which line segments (don’t) get wet?
Which line segments are neighbours?

→ 31

It
,1

Preparation: Horizontal Line Segments

i1
i2

i3

i4

i5

i6

i7

Questions:
What is the maximum number of overlapping segments?
Which line segments (don’t) get wet?

Which line segments are neighbours?

→ 31

Preparation: Horizontal Line Segments

i1
i2

i3

i4

i5

i6

i7

Questions:
What is the maximum number of overlapping segments?
Which line segments (don’t) get wet?
Which line segments are neighbours?

→ 31

1

Preparation: Horizontal Line Segments

i1
i2

i3

i4

i5

i6

i7

Idea of a sweep line: vertical line, moving in x-direction, observes the
geometric objects.

→ 32

I

Preparation: Horizontal Line Segments

i1
i2

i3

i4

i5

i6

i7

Event list: list of points where the state observed by the sweepline changes.

→ 33

Preparation: Overlapping Line Segments

i1
i2

i3

i4

i5

i6

i7

1 2 3 4 3 4 5 434 3 2 1 0

Q: What is the maxi-
mum number of over-
lapping segments?

Sweep line controls a
counter that is incre-
mented (decremented)
at the left (right) end
point of a line seg-
ment.
A: maximum counter
value

→ 34

Preparation: Overlapping Line Segments

i1
i2

i3

i4

i5

i6

i7

1 2 3 4 3 4 5 434 3 2 1 0

Q: What is the maxi-
mum number of over-
lapping segments?
Sweep line controls a
counter that is incre-
mented (decremented)
at the left (right) end
point of a line seg-
ment.

A: maximum counter
value

→ 34

Preparation: Overlapping Line Segments

i1
i2

i3

i4

i5

i6

i7

1 2 3 4 3 4 5 434 3 2 1 0

Q: What is the maxi-
mum number of over-
lapping segments?
Sweep line controls a
counter that is incre-
mented (decremented)
at the left (right) end
point of a line seg-
ment.
A: maximum counter
value

→ 34

Preparation: Top-Most Line Segments

i1
i2

i3

i4

i5

i6

i7

i1 i2

i1 i3

i2

i5

i6 i4

i3

i5

i7

i5

Q: Which line segments
get wet?

Sweep line controls
a binary search tree
that comprises the line
segments according to
their vertical ordering.
A: Line segments on
the very left of the
tree.

→ 35

Preparation: Top-Most Line Segments

i1
i2

i3

i4

i5

i6

i7

i1 i2

i1 i3

i2

i5

i6 i4

i3

i5

i7

i5

Q: Which line segments
get wet?
Sweep line controls
a binary search tree
that comprises the line
segments according to
their vertical ordering.

A: Line segments on
the very left of the
tree.

→ 35

↑
10.

Preparation: Top-Most Line Segments

i1
i2

i3

i4

i5

i6

i7

i1 i2

i1 i3

i2

i5

i6 i4

i3

i5

i7

i5

Q: Which line segments
get wet?
Sweep line controls
a binary search tree
that comprises the line
segments according to
their vertical ordering.
A: Line segments on
the very left of the
tree.

→ 35

↑

! 188
↳

Preparation: Top-Most Line Segments

i1
i2

i3

i4

i5

i6

i7

i1 i2

i1 i3

i2

i5

i6 i4

i3

i5

i7

i5

Q: Why don’t we use
Max-Heap (instead of
BST)?

A: The deletion of an
arbitrary element (not
the maximum) from a
heap is not easy.

→ 36

Preparation: Top-Most Line Segments

i1
i2

i3

i4

i5

i6

i7

i1 i2

i1 i3

i2

i5

i6 i4

i3

i5

i7

i5

Q: Why don’t we use
Max-Heap (instead of
BST)?
A: The deletion of an
arbitrary element (not
the maximum) from a
heap is not easy.

→ 36

Preparation: Neighboring Line Segments

i1
i2

i3

i4

i5

i6

i7

i2

i1

i4

i3

i4

i5 i7

Q: Which line segments
are neighbours?

A: Line segments that
lie next to each other
(symmetric predeces-
sor/successor) at the
beginning of a line seg-
ment or when another
line segment ends.

→ 37

Preparation: Neighboring Line Segments

i1
i2

i3

i4

i5

i6

i7

i2

i1

i4

i3

i4

i5 i7

Q: Which line segments
are neighbours?
A: Line segments that
lie next to each other
(symmetric predeces-
sor/successor) at the
beginning of a line seg-
ment or when another
line segment ends.

→ 37

I

↓

Cutting many line segments

→ 38

*

Intersection of line segments

a

b

c

d

e

a b
d
e
c

b
a
c

b
d
a
e
c

b
a
e
c

e
d

ee
d
c↑!

→ 39

#

5. Geometric Algorithms

5.2. Geometric Divide & Conquer: Closest Point Pair

→ 40

!A double
check p . 338t script

Divide And Conquer: Closest Point Pair

Set of points P , starting with P → Q

Arrays X and Y , containing the elements
of P , sorted by x- and y-coordinate,
respectively.
Partition point set into two (approximately)
equally sized sets PL and PR, separated by
a vertical line through a point of P .
Split arrays X and Y accordingly in XL, XR.
YL and YR.

→ 41

S

Divide And Conquer: Closest Point Pair

Set of points P , starting with P → Q

Arrays X and Y , containing the elements
of P , sorted by x- and y-coordinate,
respectively.

Partition point set into two (approximately)
equally sized sets PL and PR, separated by
a vertical line through a point of P .
Split arrays X and Y accordingly in XL, XR.
YL and YR.

→ 41

--

T

Divide And Conquer: Closest Point Pair

Set of points P , starting with P → Q

Arrays X and Y , containing the elements
of P , sorted by x- and y-coordinate,
respectively.
Partition point set into two (approximately)
equally sized sets PL and PR, separated by
a vertical line through a point of P .

Split arrays X and Y accordingly in XL, XR.
YL and YR.

→ 41

W

Divide And Conquer: Closest Point Pair

Set of points P , starting with P → Q

Arrays X and Y , containing the elements
of P , sorted by x- and y-coordinate,
respectively.
Partition point set into two (approximately)
equally sized sets PL and PR, separated by
a vertical line through a point of P .
Split arrays X and Y accordingly in XL, XR.
YL and YR.

→ 41

↑
F

Divide And Conquer: Closest Point Pair

Recursive call with PL, XL, YL and
PR, XR, YR. Yields minimal distances ωL, ωR.

(If only k ↓ 2 points: compute the minimal
distance directly)
After recursive call ω = min(ωL, ωR).
Combine (next slides) and return best
result.

→ 42

Divide And Conquer: Closest Point Pair

Recursive call with PL, XL, YL and
PR, XR, YR. Yields minimal distances ωL, ωR.

(If only k ↓ 2 points: compute the minimal
distance directly)
After recursive call ω = min(ωL, ωR).
Combine (next slides) and return best
result.

→ 42

Divide And Conquer: Closest Point Pair

Recursive call with PL, XL, YL and
PR, XR, YR. Yields minimal distances ωL, ωR.
(If only k ↓ 2 points: compute the minimal
distance directly)

After recursive call ω = min(ωL, ωR).
Combine (next slides) and return best
result.

→ 42

·

Go
↑ Istaine

estd: parirs--

Divide And Conquer: Closest Point Pair

Recursive call with PL, XL, YL and
PR, XR, YR. Yields minimal distances ωL, ωR.
(If only k ↓ 2 points: compute the minimal
distance directly)
After recursive call ω = min(ωL, ωR).
Combine (next slides) and return best
result.

→ 42

T
is
it

Minimum Distance across middle line: Observations

Which points are relevant for point p?
↔ the ones in a circle around p with radius ω

Observation 1: The relevant points are con-
tained in two (ω ↑ ω)-rectangles.

How many points are in these rectangles?
Observation 2: At most 8.

ω

ω

ω

At most one point per (ω/2 ↑ ω/2)-rectangle,

otherwise they have distance
↘

2 ·
ω
2 < ω.

ω ω

M

ω

p

→ 43

Minimum Distance across middle line: Observations

Which points are relevant for point p?
↔ the ones in a circle around p with radius ω

Observation 1: The relevant points are con-
tained in two (ω ↑ ω)-rectangles.

How many points are in these rectangles?
Observation 2: At most 8.

ω

ω

ω

At most one point per (ω/2 ↑ ω/2)-rectangle,

otherwise they have distance
↘

2 ·
ω
2 < ω.

ω ω

M

ω

p

→ 43

Minimum Distance across middle line: Observations
Which points are relevant for point p?

↔ the ones in a circle around p with radius ω

Observation 1: The relevant points are con-
tained in two (ω ↑ ω)-rectangles.

How many points are in these rectangles?
Observation 2: At most 8.

ω

ω

ω

At most one point per (ω/2 ↑ ω/2)-rectangle,

otherwise they have distance
↘

2 ·
ω
2 < ω.

ω ω

M

ω

p

→ 43

·

Minimum Distance across middle line: Observations
Which points are relevant for point p?
↔ the ones in a circle around p with radius ω

Observation 1: The relevant points are con-
tained in two (ω ↑ ω)-rectangles.

How many points are in these rectangles?
Observation 2: At most 8.

ω

ω

ω

At most one point per (ω/2 ↑ ω/2)-rectangle,

otherwise they have distance
↘

2 ·
ω
2 < ω.

ω ω

M

ω

p

→ 43

Minimum Distance across middle line: Observations
Which points are relevant for point p?
↔ the ones in a circle around p with radius ω

Observation 1: The relevant points are con-
tained in two (ω ↑ ω)-rectangles.

How many points are in these rectangles?
Observation 2: At most 8.

ω

ω

ω

At most one point per (ω/2 ↑ ω/2)-rectangle,

otherwise they have distance
↘

2 ·
ω
2 < ω.

ω ω

M

ω

p

→ 43

=mi-(d2 , Unl

↑

&

Minimum Distance across middle line: Observations
Which points are relevant for point p?
↔ the ones in a circle around p with radius ω

Observation 1: The relevant points are con-
tained in two (ω ↑ ω)-rectangles.

How many points are in these rectangles?
Observation 2: At most 8.

ω

ω

ω

At most one point per (ω/2 ↑ ω/2)-rectangle,

otherwise they have distance
↘

2 ·
ω
2 < ω.

ω ω

M

ω

p

→ 43

Minimum Distance across middle line: Observations
Which points are relevant for point p?
↔ the ones in a circle around p with radius ω

Observation 1: The relevant points are con-
tained in two (ω ↑ ω)-rectangles.

How many points are in these rectangles?

Observation 2: At most 8.

ω

ω

ω

At most one point per (ω/2 ↑ ω/2)-rectangle,

otherwise they have distance
↘

2 ·
ω
2 < ω.

ω ω

M

ω

p

→ 43

Minimum Distance across middle line: Observations
Which points are relevant for point p?
↔ the ones in a circle around p with radius ω

Observation 1: The relevant points are con-
tained in two (ω ↑ ω)-rectangles.

How many points are in these rectangles?
Observation 2: At most 8.

ω

ω

ω

At most one point per (ω/2 ↑ ω/2)-rectangle,

otherwise they have distance
↘

2 ·
ω
2 < ω.

ω ω

M

ω

p

→ 43

Minimum Distance across middle line: Observations
Which points are relevant for point p?
↔ the ones in a circle around p with radius ω

Observation 1: The relevant points are con-
tained in two (ω ↑ ω)-rectangles.

How many points are in these rectangles?
Observation 2: At most 8.

ω

ω

ω

At most one point per (ω/2 ↑ ω/2)-rectangle,

otherwise they have distance
↘

2 ·
ω
2 < ω.

ω ω

M

ω

p

→ 43

Minimum Distance across middle line: Observations
Which points are relevant for point p?
↔ the ones in a circle around p with radius ω

Observation 1: The relevant points are con-
tained in two (ω ↑ ω)-rectangles.

How many points are in these rectangles?
Observation 2: At most 8.

ω

ω

ω

At most one point per (ω/2 ↑ ω/2)-rectangle,

otherwise they have distance
↘

2 ·
ω
2 < ω.

ω ω

M

ω

p

→ 43

&

Minimum Distance across middle line: Observations
Which points are relevant for point p?
↔ the ones in a circle around p with radius ω

Observation 1: The relevant points are con-
tained in two (ω ↑ ω)-rectangles.

How many points are in these rectangles?
Observation 2: At most 8.

ω

ω

ω

At most one point per (ω/2 ↑ ω/2)-rectangle,

otherwise they have distance
↘

2 ·
ω
2 < ω.

ω ω

M

ω

p

→ 43

*

S

M
M

- i
F ·

3

Minimum Distance across middle line: Observations
Which points are relevant for point p?
↔ the ones in a circle around p with radius ω

Observation 1: The relevant points are con-
tained in two (ω ↑ ω)-rectangles.

How many points are in these rectangles?
Observation 2: At most 8.

ω

ω

ω

At most one point per (ω/2 ↑ ω/2)-rectangle,
otherwise they have distance

↘
2 ·

ω
2 < ω.

ω ω

M

ω

p

→ 43

Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates
filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance ↓ ω

↔ at most 8 points

Running time:
Sorting: !(n log n)
Filtering: !(n)
compute the distances: !(n)

↔ !(n log n) per recursion step

ω ω

M

L R

→ 44

Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates
filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance ↓ ω

↔ at most 8 points

Running time:
Sorting: !(n log n)
Filtering: !(n)
compute the distances: !(n)

↔ !(n log n) per recursion step

ω ω

M

L R

→ 44

Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates

filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance ↓ ω

↔ at most 8 points

Running time:
Sorting: !(n log n)
Filtering: !(n)
compute the distances: !(n)

↔ !(n log n) per recursion step

ω ω

ML R
→ 44

Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates
filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance ↓ ω

↔ at most 8 points

Running time:
Sorting: !(n log n)
Filtering: !(n)
compute the distances: !(n)

↔ !(n log n) per recursion step

ω ω

ML R
→ 44

*fu

u-

Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates
filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance ↓ ω

↔ at most 8 points
Running time:
Sorting: !(n log n)
Filtering: !(n)
compute the distances: !(n)

↔ !(n log n) per recursion step

ω ω

ML R
→ 44

I--

Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates
filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance ↓ ω

↔ at most 8 points
Running time:
Sorting: !(n log n)
Filtering: !(n)
compute the distances: !(n)

↔ !(n log n) per recursion step

ω ω

ML R
→ 44

-

Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates
filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance ↓ ω

↔ at most 8 points
Running time:
Sorting: !(n log n)
Filtering: !(n)
compute the distances: !(n)

↔ !(n log n) per recursion step

ω ω

ML R
→ 44

ImM

Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates
filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance ↓ ω

↔ at most 8 points
Running time:
Sorting: !(n log n)
Filtering: !(n)
compute the distances: !(n)

↔ !(n log n) per recursion step

ω ω

ML R
→ 44

Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates
filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance ↓ ω

↔ at most 8 points
Running time:
Sorting: !(n log n)
Filtering: !(n)
compute the distances: !(n)

↔ !(n log n) per recursion step

ω ω

ML R
→ 44

Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates
filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance ↓ ω

↔ at most 8 points

Running time:

Sorting: !(n log n)
Filtering: !(n)
compute the distances: !(n)

↔ !(n log n) per recursion step

ω ω

ML R
→ 44

Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates
filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance ↓ ω

↔ at most 8 points

Running time:
Sorting: !(n log n)

Filtering: !(n)
compute the distances: !(n)

↔ !(n log n) per recursion step

ω ω

ML R
→ 44

Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates
filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance ↓ ω

↔ at most 8 points
Running time:
Sorting: !(n log n)
Filtering: !(n)

compute the distances: !(n)
↔ !(n log n) per recursion step

ω ω

ML R
→ 44

Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates
filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance ↓ ω

↔ at most 8 points
Running time:
Sorting: !(n log n)
Filtering: !(n)
compute the distances: !(n)

↔ !(n log n) per recursion step

ω ω

ML R
→ 44

-
->

which
exactly

?

Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates
filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance ↓ ω

↔ at most 8 points
Running time:
Sorting: !(n log n)
Filtering: !(n)
compute the distances: !(n)

↔ !(n log n) per recursion step

ω ω

ML R
→ 44

Implementation

Goal: recursion equation (runtime) T (n) = 2 · T (n
2) + O(n).

Non-trivial: only arrays Y and Y
→

Idea: merge reversed: run through Y that is presorted by y-coordinate.
For each element follow the selection criterion of the x-coordinate and
append the element either to YL or YR. Same procedure for Y

→. Runtime
O(|Y |).

Overall runtime: O(n log n).

→ 45

-

Questions

How does the algorithm compare to a brute-force approach?

Divide and conquer reduces the problem size at each step, resulting in a
time complexity of O(n log n), while a brute-force approach has a time
complexity of O(n2).

Why do we avoid sorting at each step of the recursion?

Sorting is O(n log n) and the time complexity of merging should be linear.

→ 46

Questions

How does the algorithm compare to a brute-force approach?

Divide and conquer reduces the problem size at each step, resulting in a
time complexity of O(n log n), while a brute-force approach has a time
complexity of O(n2).

Why do we avoid sorting at each step of the recursion?

Sorting is O(n log n) and the time complexity of merging should be linear.

→ 46

Questions

How does the algorithm compare to a brute-force approach?

Divide and conquer reduces the problem size at each step, resulting in a
time complexity of O(n log n), while a brute-force approach has a time
complexity of O(n2).

Why do we avoid sorting at each step of the recursion?

Sorting is O(n log n) and the time complexity of merging should be linear.

→ 46

Questions

How does the algorithm compare to a brute-force approach?

Divide and conquer reduces the problem size at each step, resulting in a
time complexity of O(n log n), while a brute-force approach has a time
complexity of O(n2).

Why do we avoid sorting at each step of the recursion?

Sorting is O(n log n) and the time complexity of merging should be linear.

→ 46

Questions

How does the algorithm compare to a brute-force approach?

Divide and conquer reduces the problem size at each step, resulting in a
time complexity of O(n log n), while a brute-force approach has a time
complexity of O(n2).

Why do we avoid sorting at each step of the recursion?

Sorting is O(n log n) and the time complexity of merging should be linear.

→ 46

6. Graphs

6.1. Graphs: DFS and BFS

→ 47

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) ↑ E ?

!(1) !(deg+
v)

Find neighbours/successors of v ↑ V

!(n) !(deg+
v)

find v ↑ V without neighbour/successor

!(n2) !(n)

find all edges e ↑ E

!(n2) !(n + m)

Insert edge

!(1) !(1)

Delete edge

!(1) !(deg+
v)

→ 48

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) ↑ E ? !(1)

!(deg+
v)

Find neighbours/successors of v ↑ V

!(n) !(deg+
v)

find v ↑ V without neighbour/successor

!(n2) !(n)

find all edges e ↑ E

!(n2) !(n + m)

Insert edge

!(1) !(1)

Delete edge

!(1) !(deg+
v)

→ 48

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) ↑ E ? !(1) !(deg+
v)

Find neighbours/successors of v ↑ V

!(n) !(deg+
v)

find v ↑ V without neighbour/successor

!(n2) !(n)

find all edges e ↑ E

!(n2) !(n + m)

Insert edge

!(1) !(1)

Delete edge

!(1) !(deg+
v)

→ 48

&

Liat Matrix

0 o
I

↑ C
I O

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) ↑ E ? !(1) !(deg+
v)

Find neighbours/successors of v ↑ V !(n)

!(deg+
v)

find v ↑ V without neighbour/successor

!(n2) !(n)

find all edges e ↑ E

!(n2) !(n + m)

Insert edge

!(1) !(1)

Delete edge

!(1) !(deg+
v)

→ 48

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) ↑ E ? !(1) !(deg+
v)

Find neighbours/successors of v ↑ V !(n) !(deg+
v)

find v ↑ V without neighbour/successor

!(n2) !(n)

find all edges e ↑ E

!(n2) !(n + m)

Insert edge

!(1) !(1)

Delete edge

!(1) !(deg+
v)

→ 48

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) ↑ E ? !(1) !(deg+
v)

Find neighbours/successors of v ↑ V !(n) !(deg+
v)

find v ↑ V without neighbour/successor !(n2)

!(n)

find all edges e ↑ E

!(n2) !(n + m)

Insert edge

!(1) !(1)

Delete edge

!(1) !(deg+
v)

→ 48

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) ↑ E ? !(1) !(deg+
v)

Find neighbours/successors of v ↑ V !(n) !(deg+
v)

find v ↑ V without neighbour/successor !(n2) !(n)
find all edges e ↑ E

!(n2) !(n + m)

Insert edge

!(1) !(1)

Delete edge

!(1) !(deg+
v)

→ 48

↳

Y for on an w

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) ↑ E ? !(1) !(deg+
v)

Find neighbours/successors of v ↑ V !(n) !(deg+
v)

find v ↑ V without neighbour/successor !(n2) !(n)
find all edges e ↑ E !(n2)

!(n + m)

Insert edge

!(1) !(1)

Delete edge

!(1) !(deg+
v)

→ 48

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) ↑ E ? !(1) !(deg+
v)

Find neighbours/successors of v ↑ V !(n) !(deg+
v)

find v ↑ V without neighbour/successor !(n2) !(n)
find all edges e ↑ E !(n2) !(n + m)
Insert edge

!(1) !(1)

Delete edge

!(1) !(deg+
v)

→ 48

&
5(h · maxdy (

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) ↑ E ? !(1) !(deg+
v)

Find neighbours/successors of v ↑ V !(n) !(deg+
v)

find v ↑ V without neighbour/successor !(n2) !(n)
find all edges e ↑ E !(n2) !(n + m)
Insert edge !(1)

!(1)

Delete edge

!(1) !(deg+
v)

→ 48

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) ↑ E ? !(1) !(deg+
v)

Find neighbours/successors of v ↑ V !(n) !(deg+
v)

find v ↑ V without neighbour/successor !(n2) !(n)
find all edges e ↑ E !(n2) !(n + m)
Insert edge !(1) !(1)
Delete edge

!(1) !(deg+
v)

→ 48Fi

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) ↑ E ? !(1) !(deg+
v)

Find neighbours/successors of v ↑ V !(n) !(deg+
v)

find v ↑ V without neighbour/successor !(n2) !(n)
find all edges e ↑ E !(n2) !(n + m)
Insert edge !(1) !(1)
Delete edge !(1)

!(deg+
v)

→ 48

Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) ↑ E ? !(1) !(deg+
v)

Find neighbours/successors of v ↑ V !(n) !(deg+
v)

find v ↑ V without neighbour/successor !(n2) !(n)
find all edges e ↑ E !(n2) !(n + m)
Insert edge !(1) !(1)
Delete edge !(1) !(deg+

v)

→ 48

o

W

Quiz #1

Question
Which graph representation, adjacency matrix or adjacency list, is more
suitable for representing a graph with a high number of edges compared to
vertices?

Answer
For very dense graphs, when the number of edges is close to n

2, an
adjacency matrix is more suitable; the space complexity of an adjacency
matrix is !(n2), which is independent of the number of edges.

→ 49

Quiz #1

Question
Which graph representation, adjacency matrix or adjacency list, is more
suitable for representing a graph with a high number of edges compared to
vertices?

Answer
For very dense graphs, when the number of edges is close to n

2, an
adjacency matrix is more suitable; the space complexity of an adjacency
matrix is !(n2), which is independent of the number of edges.

→ 49

Quiz #2

Question
When would it be more appropriate to use an adjacency matrix
representation rather than an adjacency list representation? Provide
another example scenario.

Answer
For example, in a scenario where you need to frequently check the presence
of an edge or update edges between vertices, an adjacency matrix would be
more suitable due to its !(1) edge lookup, insertion, and deletion time
complexity.

→ 50

Quiz #2

Question
When would it be more appropriate to use an adjacency matrix
representation rather than an adjacency list representation? Provide
another example scenario.

Answer
For example, in a scenario where you need to frequently check the presence
of an edge or update edges between vertices, an adjacency matrix would be
more suitable due to its !(1) edge lookup, insertion, and deletion time
complexity.

→ 50

Quiz #3

A

B

C

D

E

F
We want to count the number of triangles (cycles with 3 nodes and edges)
in a graph G.

In what time can we do this with an adjacency matrix? How about an
adjacency list?

→ 51

Quiz #3

A

B

C

D

E

F
We want to count the number of triangles (cycles with 3 nodes and edges)
in a graph G.

In what time can we do this with an adjacency matrix? How about an
adjacency list?

→ 51

Quiz #3

A

B

C

D

E

F
We want to count the number of triangles (cycles with 3 nodes and edges)
in a graph G.
In what time can we do this with an adjacency matrix? How about an
adjacency list?

→ 51

Quiz #3 Solution

Adjacency matrix:

!(n2 + m · n)
Naively: !(n3): check for each of the

(
n
3

)
combinations of 3 nodes whether

the corresponding 3 edges are there.
E!cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list: !(n · m) with !(n) additional memory or !(n2

· m)
Naively: !(n2

· m): for every edge e = {u, v} and every potential third node
w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E!cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e"ectively comparing !(m) bitmaps of length n.

→ 52

Quiz #3 Solution

Adjacency matrix: !(n2 + m · n)

Naively: !(n3): check for each of the
(

n
3

)
combinations of 3 nodes whether

the corresponding 3 edges are there.
E!cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list: !(n · m) with !(n) additional memory or !(n2

· m)
Naively: !(n2

· m): for every edge e = {u, v} and every potential third node
w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E!cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e"ectively comparing !(m) bitmaps of length n.

→ 52

Quiz #3 Solution

Adjacency matrix: !(n2 + m · n)
Naively: !(n3): check for each of the

(
n
3

)
combinations of 3 nodes whether

the corresponding 3 edges are there.

E!cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list: !(n · m) with !(n) additional memory or !(n2

· m)
Naively: !(n2

· m): for every edge e = {u, v} and every potential third node
w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E!cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e"ectively comparing !(m) bitmaps of length n.

→ 52

Quiz #3 Solution

Adjacency matrix: !(n2 + m · n)
Naively: !(n3): check for each of the

(
n
3

)
combinations of 3 nodes whether

the corresponding 3 edges are there.
E!cient: for every edge and every additional node, check whether the two
additional edges are there.

Adjacency list: !(n · m) with !(n) additional memory or !(n2
· m)

Naively: !(n2
· m): for every edge e = {u, v} and every potential third node

w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E!cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e"ectively comparing !(m) bitmaps of length n.

→ 52

Quiz #3 Solution

Adjacency matrix: !(n2 + m · n)
Naively: !(n3): check for each of the

(
n
3

)
combinations of 3 nodes whether

the corresponding 3 edges are there.
E!cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list:

!(n · m) with !(n) additional memory or !(n2
· m)

Naively: !(n2
· m): for every edge e = {u, v} and every potential third node

w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E!cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e"ectively comparing !(m) bitmaps of length n.

→ 52

Quiz #3 Solution

Adjacency matrix: !(n2 + m · n)
Naively: !(n3): check for each of the

(
n
3

)
combinations of 3 nodes whether

the corresponding 3 edges are there.
E!cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list: !(n · m) with !(n) additional memory or !(n2

· m)

Naively: !(n2
· m): for every edge e = {u, v} and every potential third node

w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E!cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e"ectively comparing !(m) bitmaps of length n.

→ 52

Quiz #3 Solution

Adjacency matrix: !(n2 + m · n)
Naively: !(n3): check for each of the

(
n
3

)
combinations of 3 nodes whether

the corresponding 3 edges are there.
E!cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list: !(n · m) with !(n) additional memory or !(n2

· m)
Naively: !(n2

· m): for every edge e = {u, v} and every potential third node
w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.

E!cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e"ectively comparing !(m) bitmaps of length n.

→ 52

Quiz #3 Solution

Adjacency matrix: !(n2 + m · n)
Naively: !(n3): check for each of the

(
n
3

)
combinations of 3 nodes whether

the corresponding 3 edges are there.
E!cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list: !(n · m) with !(n) additional memory or !(n2

· m)
Naively: !(n2

· m): for every edge e = {u, v} and every potential third node
w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E!cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e"ectively comparing !(m) bitmaps of length n.

→ 52

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c f

a

b d e

c f

→ 53

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a

b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c f

a

b d e

c f

→ 53

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c

f

a

b

d e

c f

→ 53

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d

e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c

f

a

b d

e

c f

→ 53

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c f

a

b d e

c f

→ 53

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c f

a

b d e

c

f

→ 53

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c f

a

b d e

c f

→ 53

Depth-First-Search DFS

DFS starting from a:

a b c

d e f

g h i

a b c

d e f

DFS-Tree: Distances and Parents

a

b d

c e

f

Distance 0

Distance 1

Distance 2

Distance 3

a

b

c

d

e

f

a

b

c

d

e

f

→ 54

Depth-First-Search DFS

DFS starting from a:

a b c

d e f

g h i

a

b c

d e f

DFS-Tree: Distances and Parents

a

b d

c e

f

Distance 0

Distance 1

Distance 2

Distance 3

a

b

c

d

e

f

a

b

c

d

e

f

→ 54

Depth-First-Search DFS

DFS starting from a:

a b c

d e f

g h i

a b

c

d e f

DFS-Tree: Distances and Parents

a

b d

c e

f

Distance 0

Distance 1

Distance 2

Distance 3

a

b

c

d

e

f

a

b

c

d

e

f

→ 54

Depth-First-Search DFS

DFS starting from a:

a b c

d e f

g h i

a b c

d e f

DFS-Tree: Distances and Parents

a

b d

c e

f

Distance 0

Distance 1

Distance 2

Distance 3

a

b

c

d

e

f

a

b

c

d

e

f

→ 54

Depth-First-Search DFS

DFS starting from a:

a b c

d e f

g h i

a b c

d

e f

DFS-Tree: Distances and Parents

a

b d

c e

f

Distance 0

Distance 1

Distance 2

Distance 3

a

b

c

d

e

f

a

b

c

d

e

f

→ 54

Depth-First-Search DFS

DFS starting from a:

a b c

d e f

g h i

a b c

d e

f

DFS-Tree: Distances and Parents

a

b d

c e

f

Distance 0

Distance 1

Distance 2

Distance 3

a

b

c

d

e

f

a

b

c

d

e

f

→ 54

Depth-First-Search DFS

DFS starting from a:

a b c

d e f

g h i

a b c

d e f

DFS-Tree: Distances and Parents

a

b d

c e

f

Distance 0

Distance 1

Distance 2

Distance 3

a

b

c

d

e

f

a

b

c

d

e

f

→ 54

Detect Cycles

Cycle Detection
How can you detect cycles in a graph? Explain the process for undirected
and directed graphs.

→ 55

Detect Cycles

DFS Cycle Detection
Start DFS traversal from an arbitrary node
undirected: If a visited node is encountered again (excluding the
immediate parent), a cycle exists.
directed: If an edge to a grey node is found, a directed cycle exists.

→ 56

Exam Question Example

Answer: 14

→ 57

Exam Question Example

Answer: 14
→ 57

Depth-first-search and Breadth-first-search

A

B

C D

E

FG

H

Starting at A

DFS: A, B, C, D, E, F, H, G

BFS: A, B, F, C, H, D, G, E

There is no starting vertex where the DFS ordering equals the BFS ordering.

→ 58

Depth-first-search and Breadth-first-search

A

B

C D

E

FG

H

Starting at A

DFS: A, B, C, D, E, F, H, G

BFS: A, B, F, C, H, D, G, E

There is no starting vertex where the DFS ordering equals the BFS ordering.

→ 58

Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering

A

B
C D

E

Starting at A

DFS: A, B, C, D, E

BFS: A, B, C, D, E

Starting at C

DFS: C, A, B, D, E

BFS: C, A, B, D, E

→ 59

Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering

A

B
C D

E

Starting at A

DFS: A, B, C, D, E

BFS: A, B, C, D, E

Starting at C

DFS: C, A, B, D, E

BFS: C, A, B, D, E

→ 59

Quiz (from an old exam): BFS/DFS
The following graph is visited with a breadth-first search and a depth-first
search algorithm starting at node A. If there are several possibilities for a
visiting order of the neighbours, the alphabetical order is chosen. Provide
both visiting orders.

A

B

C

D

E

F

Breadth First Search: ?

Depth First Search: ?
→ 60

Quiz (from an old exam): BFS/DFS
The following graph is visited with a breadth-first search and a depth-first
search algorithm starting at node A. If there are several possibilities for a
visiting order of the neighbours, the alphabetical order is chosen. Provide
both visiting orders.

A

B

C

D

E

F

Breadth First Search: A C D E B F

Depth First Search: ?
→ 60

Quiz (from an old exam): BFS/DFS
The following graph is visited with a breadth-first search and a depth-first
search algorithm starting at node A. If there are several possibilities for a
visiting order of the neighbours, the alphabetical order is chosen. Provide
both visiting orders.

A

B

C

D

E

F

Breadth First Search: A C D E B F

Depth First Search: A C D B F E
→ 60

6. Graphs

6.2. Appendix: Real World Shortest Path Problems
Modeling

→ 61

River Crossing (Missionaries and Cannibals)

Problem: Three cannibals and three missionaries are standing at a river
bank. The available boat can carry two people. At no time may at any place
(banks or boat) be more cannibals than missionaries. How can the
missionaries and cannibals cross the river as fast as possible? 1

K K K

M M M
B

1There are slight variations of this problem. It is equivalent to the jealous husbands
problem.

→ 62

Problem as Graph

Enumerate permitted configurations as nodes and connect them with an
edge, when a crossing is allowed. The problem then becomes a shortest
path problem.
Example

left right
missionaries 3 0
cannibals 3 0
boat x

left right
missionaries 2 1
cannibals 2 1
boat x

Possible crossing

6 People on the left bank 4 People on the left bank

→ 63

The whole problem as a graph

3 0
3 0
x

3 0
2 1
x

3 0
1 2
x

3 0
0 3
x

2 1
2 1
x

1 2
1 2
x

0 3
1 2
x

0 3
2 1
x

0 3
3 0
x

6 5 4 3 4 2 1 2 3

3 0
2 1

x

3 0
1 2

x

3 0
0 3

x

2 1
2 1

x

1 2
1 2

x

0 3
1 2

x

0 3
2 1

x

0 3
3 0

x

0 3
0 3

x

5 4 3 4 2 1 2 3 0

→ 64

Real-World Example: Mystic Square

Fastest solution for

2 4 6
7 5 3
1 8

1 2 3
4 5 6
7 8

→ 65

Real-World Example: Mystic Square

Fastest solution for

2 4 6
7 5 3
1 8

1 2 3
4 5 6
7 8

→ 65

Real-World Example: Mystic Square

Fastest solution for

2 4 6
7 5 3
1 8

1 2 3
4 5 6
7 8

→ 65

Real-World Example: Mystic Square

Fastest solution for

2 4 6
7 5 3
1 8

1 2 3
4 5 6
7 8

→ 65

Problem as Graph

1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 5 6

7 8

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

1 2 3
4 8 5
7 6

1 2 3
4 5

7 8 6

2 4 6
7 5 3
1 8

→ 66

Problem as Graph
1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 5 6

7 8

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

1 2 3
4 8 5
7 6

1 2 3
4 5

7 8 6

2 4 6
7 5 3
1 8

→ 66

Problem as Graph
1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 5 6

7 8

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

1 2 3
4 8 5
7 6

1 2 3
4 5

7 8 6

2 4 6
7 5 3
1 8

→ 66

Problem as Graph
1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 5 6

7 8

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

1 2 3
4 8 5
7 6

1 2 3
4 5

7 8 6

2 4 6
7 5 3
1 8

→ 66

Problem as Graph
1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 5 6

7 8

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

1 2 3
4 8 5
7 6

1 2 3
4 5

7 8 6

2 4 6
7 5 3
1 8

→ 66

7. Outro

→ 67

General Questions?

→ 68

See you next time!

Have a nice week!

→ 69

