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1. Follow-up
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Follow-up from last session

Wasn’t able to cover any of the questions from last time, due to an
already very busy TA meeting and too little time overall. Sorry.
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2. Learning Objectives
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Objectives

↭ Understand and be able to manually execute all of the below

↭ Breadth-First Search (BFS)
↭ Depth-First Search (DFS)
↭ Dijkstra’s Shortest Path Algorithm
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3. Summary
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Getting on the same page

What did you cover in the lectures?
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What did you cover in the lectures?
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4. Repetition Theory Graphs
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4. Repetition Theory Graphs

4.1. Graphs: DFS and BFS
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Quiz: Runtimes of simple Operations

Operation Matrix List

(v, u) ↑ E ?

!(1) !(deg+
v)

Find neighbours/successors of v ↑ V

!(n) !(deg+
v)

find v ↑ V without neighbour/successor

!(n2) !(n)

find all edges e ↑ E

!(n2) !(n + m)

Insert edge

!(1) !(1)

Delete edge

!(1) !(deg+
v)

→ 10
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Quiz #1

Question
Which graph representation, adjacency matrix or adjacency list, is more
suitable for representing a graph with a high number of edges compared to
vertices?

Answer
For very dense graphs, when the number of edges is close to n

2, an
adjacency matrix is more suitable; the space complexity of an adjacency
matrix is !(n2), which is independent of the number of edges.
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Quiz #2

Question
When would it be more appropriate to use an adjacency matrix
representation rather than an adjacency list representation? Provide
another example scenario.

Answer
For example, in a scenario where you need to frequently check the presence
of an edge or update edges between vertices, an adjacency matrix would be
more suitable due to its !(1) edge lookup, insertion, and deletion time
complexity.

→ 12
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Quiz #3

A

B

C

D

E

F
We want to count the number of triangles (cycles with 3 nodes and edges)
in a graph G.

In what time can we do this with an adjacency matrix? How about an
adjacency list?

→ 13



Quiz #3

A

B

C

D

E

F
We want to count the number of triangles (cycles with 3 nodes and edges)
in a graph G.

In what time can we do this with an adjacency matrix? How about an
adjacency list?

→ 13



Quiz #3

A

B

C

D

E

F
We want to count the number of triangles (cycles with 3 nodes and edges)
in a graph G.
In what time can we do this with an adjacency matrix? How about an
adjacency list?

→ 13



Quiz #3 Solution
Adjacency matrix:

!(n2 + m · n)
Naively: !(n3): check for each of the

(
n
3

)
combinations of 3 nodes whether

the corresponding 3 edges are there.
E"cient: for every edge and every additional node, check whether the two
additional edges are there.
Adjacency list: !(n · m) with !(n) additional memory or !(n2

· m)
Naively: !(n2

· m): for every edge e = {u, v} and every potential third node
w, we go through the two lists A[u] and A[v] to see whether w is a neighbor
of both.
E"cient: go through A[u], store the neighbors in a bitmap of length n, then
for each neighbor v construct the bitmap of v and compare. So we are
e#ectively comparing !(m) bitmaps of length n.

→ 14
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Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

Distance 0

Distance 1

Distance 2

a

b d e

c f

a

b d e

c f

→ 15
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Depth-First-Search DFS
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Detect Cycles

Cycle Detection
How can you detect cycles in a graph? Explain the process for undirected
and directed graphs.

→ 17



Detect Cycles

DFS Cycle Detection
Start DFS traversal from an arbitrary node
undirected: If a visited node is encountered again (excluding the
immediate parent), a cycle exists.
directed: If an edge to a grey node is found, a directed cycle exists.

→ 18



Exam Question Example

Answer: 14

→ 19
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Exam Question Example

Answer: 14
→ 19
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Depth-first-search and Breadth-first-search

A

B

C D

E

FG

H

Starting at A

DFS:

A, B, C, D, E, F, H, G

BFS: A, B, F, C, H, D, G, E

There is no starting vertex where the DFS ordering equals the BFS ordering.

→ 20
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Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering
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Quiz (from an old exam): BFS/DFS
The following graph is visited with a breadth-first search and a depth-first
search algorithm starting at node A. If there are several possibilities for a
visiting order of the neighbours, the alphabetical order is chosen. Provide
both visiting orders.

A

B

C

D

E

F

Breadth First Search: ?

Depth First Search: ?

→ 22
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search algorithm starting at node A. If there are several possibilities for a
visiting order of the neighbours, the alphabetical order is chosen. Provide
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→ 22

O 0

-p
O .

A ,c , D ,
B i F , E



Quiz (from an old exam): BFS/DFS
The following graph is visited with a breadth-first search and a depth-first
search algorithm starting at node A. If there are several possibilities for a
visiting order of the neighbours, the alphabetical order is chosen. Provide
both visiting orders.

A

B

C

D

E

F

Breadth First Search: A C D E B F
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4. Repetition Theory Graphs

4.2. Appendix: Real World Shortest Path Problems
Modeling

→ 23



River Crossing (Missionaries and Cannibals)
Problem: Three cannibals and three missionaries are standing at a river
bank. The available boat can carry two people. At no time may at any place
(banks or boat) be more cannibals than missionaries. How can the
missionaries and cannibals cross the river as fast as possible? 1

K K K

M M M
B

1There are slight variations of this problem. It is equivalent to the jealous husbands
problem.
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Problem as Graph

Enumerate permitted configurations as nodes and connect them with an
edge, when a crossing is allowed. The problem then becomes a shortest
path problem.
Example

left right
missionaries 3 0
cannibals 3 0
boat x

left right
missionaries 2 1
cannibals 2 1
boat x

Possible crossing

6 People on the left bank 4 People on the left bank
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The whole problem as a graph

3 0
3 0
x

3 0
2 1
x

3 0
1 2
x

3 0
0 3
x

2 1
2 1
x

1 2
1 2
x

0 3
1 2
x

0 3
2 1
x

0 3
3 0
x

6 5 4 3 4 2 1 2 3

3 0
2 1

x

3 0
1 2

x

3 0
0 3

x

2 1
2 1

x

1 2
1 2

x

0 3
1 2

x

0 3
2 1

x

0 3
3 0

x

0 3
0 3

x

5 4 3 4 2 1 2 3 0
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Real-World Example: Mystic Square

Fastest solution for

2 4 6
7 5 3
1 8

1 2 3
4 5 6
7 8
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Real-World Example: Mystic Square

Fastest solution for

2 4 6
7 5 3
1 8

1 2 3
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Problem as Graph

1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 5 6

7 8

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

1 2 3
4 8 5
7 6

1 2 3
4 5

7 8 6

2 4 6
7 5 3
1 8
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Problem as Graph
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Shortest Paths
Given: G = (V, E, c), c : E ↓ , s, t ↑ V .

Path: s
p↫ t : ↔s = v1, v2, . . . , vk+1 = t↗, (vi, vi+1) ↑ E (1 ↘ i ↘ k)

Weight: c(p) := ∑k
i=1 c((vi, vi+1)).

Weight of a shortest path from u to v:

ω(u, v) =




≃ no path from u to v,
min{c(p) : u

p↫ v} otherwise.
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Quiz 1
You are given a weighted directed graph G = (V, E) as well as two
designated nodes s, t.
Let p1 = ↔s, v1, . . . , vk, u↗ and p2 = ↔u, w1, . . . , wl, t↗ be two shortest paths,
from s to u and from u to t, respectively.
Is the following statement correct?
The concatenation ↔s, v1, . . . , vk, u, w1, . . . , wl, t↗ is a shortest path from s to t.

The statement is false. As a counterexample we take a triangle graph
G = (V, E) with nodes V = {s, t, z} and edges E = {(s, z), (z, t), (s, t)} all of
weight 1.
The shortest paths from s to z and from z to t have length 1. Therefore the
concatenation has length 2, however a shortest path from s to t has length
1, as there is a direct edge of weight 1 from s to t.

→ 30
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Quiz 1
You are given a weighted directed graph G = (V, E) as well as two
designated nodes s, t.
Let p1 = ↔s, v1, . . . , vk, u↗ and p2 = ↔u, w1, . . . , wl, t↗ be two shortest paths,
from s to u and from u to t, respectively.
Is the following statement correct?
The concatenation ↔s, v1, . . . , vk, u, w1, . . . , wl, t↗ is a shortest path from s to t.

The statement is false. As a counterexample we take a triangle graph
G = (V, E) with nodes V = {s, t, z} and edges E = {(s, z), (z, t), (s, t)} all of
weight 1.
The shortest paths from s to z and from z to t have length 1. Therefore the
concatenation has length 2, however a shortest path from s to t has length
1, as there is a direct edge of weight 1 from s to t.
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Quiz 2

Given any shortest path p = ↔s, v1, . . . , vω, t↗ from s to t.
Is the following statement correct (vk is on the path p)?
The two paths ↔s, v1, . . . , vk↗ and ↔vk, . . . , vω, t↗ must be shortest paths from s

to vk, and from vk to t, respectively.

The statement is true. If one of the two subpaths of P would not be a
shortest path, then we could replace this subpath in P by a shortest path.
But that would mean that P itself would become shorter, contradicting the
assumption that it is a shortest path.
It even holds that: u lies on a shortest path from s to t if and only if
ω(s, u) + ω(u, t) = ω(s, t).

→ 31
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5. Code-Expert Exercise
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Code-Example 1

’BFS on a Tree’ on Code-Expert
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6. Repetition Theory Dijkstra

→ 34



6. Repetition Theory Dijkstra

6.1. Dijkstra
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0 11
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Known shortest paths from s:
s ↫ s : 0

s ↫ d : 6

s ↫ b : 2 s ↫ f : 7
s ↫ a : 3 s ↫ e : 10
s ↫ c : 5 s ↫ t : 11

Outgoing edges:

s ↓

s ↓

s ↓

s ↓

s ↓ b ↓ c : 6

→ 36
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s → b → e : 11
s → c → f : 7

s →

s → b → c : 6

↑ 36
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Known shortest paths from s:
s ↭ s : 0 s ↭ d : 6
s ↭ b : 2 s ↭ f : 7
s ↭ a : 3 s ↭ e : 10
s ↭ c : 5 s ↭ t : 11

Outgoing edges:

s → b → a → d → e → t : 11

s →

s →

s →

s → b → c : 6
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Dijkstra (positive edge weights)

Set V of nodes is partitioned into
the set S of nodes for which a shortest
path from s is already known,
the set U = ⋃

v→S N
+(v) \ S of nodes where

a shortest path is not yet known but that
are accessible directly from S,
the set R = V \ (S ↓ U) of nodes that have
not yet been considered.

s

2

2

5

3

5

2

1

2

↑ 37



Algorithm Dijkstra(G, s)
Input: Positively weighted Graph G = (V, E, c), starting point s ↔ V ,
Output: Minimal weights d of the shortest paths and corresponding predecessor

node for each node.

foreach u ↔ V do

ds[u] ↑ ↗; ωs[u] ↑ null

ds[s] ↑ 0; U ↑ {s}

while U ↘= ≃ do

u ↑ ExtractMin(U)
foreach v ↔ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v] ↑ ds[u] + c(u, v)
ωs[v] ↑ u
U ↑ U ↓ {v}

↑ 38
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Implementation: Data Structure for U?

Relax for Dijkstra:
if ds[u] + c(u, v) < ds[v] then

ds[v] ↑ ds[u] + c(u, v)
ωs[v] ↑ u
if v ↘↔ U then

Add(U, v) // Insertion of a new (v, d(v)) in the heap of U
else

DecreaseKey(U, v) // Update of a (v, d(v)) in the heap of U

↑ 39



DecreaseKey ?

Heap ( (a, 1), (b, 4), (c, 5), (d, 8) ) =
(a,1)

(b,4)

(d,8)

(c,5)

after DecreaseKey(d, 3):

(a,1)

(d,3)

(b,4)

(c,5)

2 problems:
Position of d unknown at first. Search: !(n)
Positions of the nodes can change during DecreaseKey

↑ 40
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DecreaseKey ?

Heap ( (a, 1), (b, 4), (c, 5), (d, 8) ) =
(a,1)

(b,4)

(d,8)

(c,5)

after DecreaseKey(d, 3):
(a,1)

(d,3)

(b,4)

(c,5)

2 problems:
Position of d unknown at first. Search: !(n)
Positions of the nodes can change during DecreaseKey
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Lazy Deletion !
Heap ( (a, 1), (b, 4), (c, 5), (d, 8) ) =

(a,1)

(b,4)

(d,8)

(c,5)

Insert(d, 3):

(a,1)

(d,3)

(d,8) (b,4)

(c,5)

ExtractMin() → (a, 1)
(d,3)

(b,4)

(d,8)

(c,5)

ExtractMin() → (d, 3)
(b,4)

(d,8) (c,5)

Later ExtractMin() → (d, 8) must be ignored

↑ 41
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Runtime Dijkstra

n := |V |, m := |E|

n⇐ ExtractMin: O(n log n) (m⇐ ExtractMin with Lazy Deletion)
m⇐ Insert or DecreaseKey: O(m log n)
1⇐ Init: O(n)
Overall: O((n + m) log n). For connected graphs: O(m log n).

↑ 42



Quiz: An Interesting Graph

s t
32 16 8 4 2

5
-5

10
-10

19
-19

36
-36

69
-69

Does Dijkstra work?

↑ 43



Answer

Dijkstra works also for graphs with negative edge weights (with the
modification that nodes can be added to and removed from U repeatedly),
if no negative weight cycles are present. But Dijkstra may then exhibit
exponential running time!

↑ 44
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Quiz: An Interesting Graph

s
0

a
69

b
32

c
68

d
48

e
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g
66

h
60

i
65

t
62

32 16 8 4 2

5
-5

10
-10

19
-19

36
-36

69
-69

Shown is the situation after t has been removed from U the first time, with
the currently known best path shown in green.

S = {s, b, d, f, h, t}

U = {a, c, e, g, i}

The next node to remove is i with weight=65.
↑ 45
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i

t
60

When i is removed from U , the weight of t is updated to 65 ⇒ 5 = 60 < 62.
Thus, t is added to U again.

S = {s, b, d, f, h, i}

U = {a, c, e, g, t}

↑ 45
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60

Now t becomes the one in U with minimal weight, so it is removed from U

and its current predecessor is i. So the shortest path s → t is updated.
S = {s, b, d, f, h, i, t}

U = {a, c, e, g}

↑ 45
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When removing g from U to M , the weight of h is decreased to
66 ⇒ 10 = 56 < 60 and h is added to U again. Now h is the one with minimal
weight in U .

S = {s, b, d, f, i, t, g}

U = {a, c, e, h}
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Remove h from U . This decreases (1) i’s weight from 65 to 56 + 5 = 61, (2) t’s
weight from 60 to 56 + 2 = 58. So i, t are added to U again.

S = {s, b, d, f, g, h}

U = {a, c, e, i, t}
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t is the one with minimal weight in U again and hence added to M the 3rd
time. Now its predecessor is h and h’s predecessor is g. The updated
shortest path is shown in green.

S = {s, b, d, f, g, h, t}

U = {a, c, e, i}

↑ 45



Quiz: An Interesting Graph
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Remove i from U to M . This decreases t’s weight from 58 to 61 ⇒ 5 = 56.
Thus, t is added to U again.

S = {s, b, d, f, g, h, i}
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Quiz: An Interesting Graph
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t is moved from U to M and its shortest path is changed the 4th time.

S = {s, b, d, f, g, h, i, t}

U = {a, c, e}

↑ 45



Quiz: An Interesting Graph
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0

Let us name the path through the lower edge of a triangle with 0 and the
path through the left and right edge as 1. Then the algorithm will do the
following steps: 00000 00001 00010 00011 00100 00101 00110 00111 ... So, it
will be exponential in the number of triangles, and, thus, vertices and edges.
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7. Past Exam Questions
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Past Exam 2022: Task 1a)
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Past Exam 2022: Task 1a) – Solution

↑ 48



8. Outro

↑ 49



General Questions?

↑ 50



See you next time!

Have a nice week!

↑ 51


