
Datastructures and Algorithms
Minimum Spanning Trees, Max Flow in Flow Networks, Traveling Salesperson

Adel Gavranovi! — ETH Zürich — 2025

Overview

Learning Objectives
Remark Bonus Exercises
Minimum Spanning Trees

Recap Theory
Code-Expert Exercise

MaxFlow
Recap Theory
Quiz
Old Exam Questions

TSP

n.ethz.ch/~agavranovic

! Material

! Webpage

! Mail

→ 1

1. Feedback regarding code expert

→ 2

General things regarding code expert

Many of you wrote something like:
"Additional comparisons are going to increase time complexity."
This is not always the case!

Some comparisons, if implemented e"ciently, do not necessarily change
the time complexity.

Time complexity classes are not measured with stopwatches, but
through analytical methods.
The term "Runtime" can be ambiguous,
but the exercise clearly specifies asymptotic runtime.

→ 3

General things regarding code expert

Many of you wrote something like:
"Additional comparisons are going to increase time complexity."

This is not always the case!

Some comparisons, if implemented e"ciently, do not necessarily change
the time complexity.

Time complexity classes are not measured with stopwatches, but
through analytical methods.
The term "Runtime" can be ambiguous,
but the exercise clearly specifies asymptotic runtime.

→ 3

General things regarding code expert

Many of you wrote something like:
"Additional comparisons are going to increase time complexity."
This is not always the case!

Some comparisons, if implemented e"ciently, do not necessarily change
the time complexity.

Time complexity classes are not measured with stopwatches, but
through analytical methods.
The term "Runtime" can be ambiguous,
but the exercise clearly specifies asymptotic runtime.

→ 3

General things regarding code expert

Many of you wrote something like:
"Additional comparisons are going to increase time complexity."
This is not always the case!

Some comparisons, if implemented e"ciently, do not necessarily change
the time complexity.

Time complexity classes are not measured with stopwatches, but
through analytical methods.

The term "Runtime" can be ambiguous,
but the exercise clearly specifies asymptotic runtime.

→ 3

General things regarding code expert

Many of you wrote something like:
"Additional comparisons are going to increase time complexity."
This is not always the case!

Some comparisons, if implemented e"ciently, do not necessarily change
the time complexity.

Time complexity classes are not measured with stopwatches, but
through analytical methods.
The term "Runtime" can be ambiguous,
but the exercise clearly specifies asymptotic runtime.

→ 3

Any questions regarding code expert on your part?

→ 4

2. Learning Objectives

→ 5

Objectives

↭ Understand and be able to perform the following Algorithms by hand:

↭ Kruskal (MST)
↭ Jarnik-Prim-Dijkstra (MST)
↭ Ford-Fulkerson (Max-Flow)
↭ Edmonds-Karp (Max-Flow)

↭ Understand how UnionFind works and where one can use it
↭ Be able to implement a “2-approximation” of the (metric) TSP problem
using MSTs and a DFS

→ 6

Objectives

↭ Understand and be able to perform the following Algorithms by hand:

↭ Kruskal (MST)
↭ Jarnik-Prim-Dijkstra (MST)
↭ Ford-Fulkerson (Max-Flow)
↭ Edmonds-Karp (Max-Flow)

↭ Understand how UnionFind works and where one can use it
↭ Be able to implement a “2-approximation” of the (metric) TSP problem
using MSTs and a DFS

→ 6

3. Summary

→ 7

Getting on the same page

What did you cover in class?
Is there anything that I need to be aware of?

→ 8

Getting on the same page

What did you cover in class?
Is there anything that I need to be aware of?

→ 8

4. Remark Bonus Exercises

→ 9

Bonus Exercises

Bonus 1
It was clearly stated in the task description that standard library functions
which significantly simplify the task are not allowed. This will be graded
with 0 points.

Bonus 2
Here, the use of all standard library functions is explicitly allowed!

→ 10

Bonus Exercises

Bonus 1
It was clearly stated in the task description that standard library functions
which significantly simplify the task are not allowed. This will be graded
with 0 points.

Bonus 2
Here, the use of all standard library functions is explicitly allowed!

→ 10

5. Minimum Spanning Trees

→ 11

5. Minimum Spanning Trees

5.1. Recap Theory

→ 12

Minimum Spanning Trees

s

t

u

v

w

x

1

1

2

4
3

2

2
6

t

s u v w

x

1

1

23 2

(Solution is not unique.)

→ 13

Minimum Spanning Trees

s

t

u

v

w

x

1

1

2

4
3

2

2
6

t

s u v w

x

1

1

23 2

(Solution is not unique.)

→ 13

Minimum Spanning Trees

s

t

u

v

w

x

1

1

2

4
3

2

2
6

t

s u v w

x

1

1

23 2

(Solution is not unique.)

→ 13

&

O
x

-

·

Jarnik-Prim-Dijkstra Algorithm

Finds a minimum spanning tree.
Starts from a single node and grows.
Uses a priority queue.
Evaluates edges, not paths.

→ 14

Algorithm Jarnik-Prim-Dijkstra(G)

Input: A connected, undirected graph G = (V, E) with weights w
Output: A minimum spanning tree T

Initialize T = ↑

Choose arbitrary vertex v0 from V and add v0 to T
while V ↓= ↑ do

Choose edge (u, v) with smallest weight such that u is in T and v is in V ↔ T
Add v to T

return T

→ 15

Di!erences from Dijkstra’s Algorithm

Jarnik-Prim-Dijkstra evaluates edges. Dijkstra evaluates paths.
Jarnik-Prim-Dijkstra creates a minimum spanning tree. Dijkstra finds the
shortest path.
Jarnik-Prim-Dijkstra can handle negative weights, in contrast to
Dijkstra.1

1The shortest path algorithm by Dijkstra can only deal with negative edge weights if it is
known that no negative cycles can occur. And the algorithm can then still have an
exponential runtime. It is therefore not practicable, if negative edges occur.

→ 16

MakeSet, Union, and Find

Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets with names i and j.

In MST-Kruskal:
Make-Set(i): New tree with i as root.
Find(e): Find root of e

Union(i, j): Union of the trees i and j.

→ 17

MakeSet, Union, and Find

Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets with names i and j.

In MST-Kruskal:
Make-Set(i): New tree with i as root.
Find(e): Find root of e

Union(i, j): Union of the trees i and j.

→ 17

Algorithm MST-Kruskal(G) From the
Lecture

Input: Undirected weighted Graph G = (V, E, c)
Output: MST of G
Sort edges by weight c(e1) ↗ . . . ↗ c(em)
M → ↑

for i = 1 to |V | do

MakeSet(i)
for i = 1 to m do

(u, v) → ei

if Find(u) ↓= Find(v) then

Union(Find(u), Find(v))
M → M ↘ {ei}

// conceptually: else D → D ↘ {ei}

return (V, M, c)
→ 18

[](const Edge& e1, const Edge& e2) { return e1.length < e2.length; }

↑ use sta:: sort
with

a lambda function
that

3 to initialize
the implements the comparison

(see task description
(

Representation as array

s

t

u

v

w

x

1

1

2

4
3

2

2
6

Index s t w v u x

t

s u v w

x

1

1

23 2

Index s t u v w x
Parent t t t t t v

→ 19

Running Time of Union-Find From the
Lecture

1 2 3 4
Parent 1 2 3 4
Index 1 2 3 4

≃ Union(3, 4), Union(2, 3), Union(1, 2)

1

2

3

4

Parent 1 1 2 3
Index 1 2 3 4

Tree may degenerate... Running time of Find: !(n)

→ 20

Running Time of Union-Find From the
Lecture

1 2 3 4
Parent 1 2 3 4
Index 1 2 3 4

≃ Union(3, 4), Union(2, 3), Union(1, 2)

1

2

3

4

Parent 1 1 2 3
Index 1 2 3 4

Tree may degenerate... Running time of Find: !(n)

→ 20

Running Time of Union-Find From the
Lecture

1 2 3 4
Parent 1 2 3 4
Index 1 2 3 4

≃ Union(3, 4), Union(2, 3), Union(1, 2)

1

2

3

4

Parent 1 1 2 3
Index 1 2 3 4

Tree may degenerate... Running time of Find: !(n)

→ 20

Running Time of Union-Find From the
Lecture

1 2 3 4
Parent 1 2 3 4
Index 1 2 3 4

≃ Union(3, 4), Union(2, 3), Union(1, 2)

1

2

3

4

Parent 1 1 2 3
Index 1 2 3 4

Tree may degenerate... Running time of Find: !(n)

→ 20

Running Time of Union-Find From the
Lecture

1 2 3 4
Parent 1 2 3 4
Index 1 2 3 4

≃ Union(3, 4), Union(2, 3), Union(1, 2)

1

2

3

4

Parent 1 1 2 3
Index 1 2 3 4

Tree may degenerate...

Running time of Find: !(n)

→ 20

Running Time of Union-Find From the
Lecture

1 2 3 4
Parent 1 2 3 4
Index 1 2 3 4

≃ Union(3, 4), Union(2, 3), Union(1, 2)

1

2

3

4

Parent 1 1 2 3
Index 1 2 3 4

Tree may degenerate... Running time of Find:

!(n)

→ 20

Running Time of Union-Find From the
Lecture

1 2 3 4
Parent 1 2 3 4
Index 1 2 3 4

≃ Union(3, 4), Union(2, 3), Union(1, 2)

1

2

3

4

Parent 1 1 2 3
Index 1 2 3 4

Tree may degenerate... Running time of Find: !(n)
→ 20

Optimisation of the runtime for Find From the
Lecture

MakeSet(i) p[i] → i; h[i] → 1; return i

Union(i, j)
if h[j] > h[i] then swap(i, j)
p[j] → i
if h[i] = h[j] then h[i] → h[i] + 1

⇐ Tree depth (and worst-case running time for Find) in !(log n)

(Proof: lecture notes)

→ 21

Optimisation of the runtime for Find From the
Lecture

MakeSet(i)

p[i] → i; h[i] → 1; return i

Union(i, j)
if h[j] > h[i] then swap(i, j)
p[j] → i
if h[i] = h[j] then h[i] → h[i] + 1

⇐ Tree depth (and worst-case running time for Find) in !(log n)

(Proof: lecture notes)

→ 21

Optimisation of the runtime for Find From the
Lecture

MakeSet(i) p[i] → i; h[i] → 1; return i

Union(i, j)
if h[j] > h[i] then swap(i, j)
p[j] → i
if h[i] = h[j] then h[i] → h[i] + 1

⇐ Tree depth (and worst-case running time for Find) in !(log n)

(Proof: lecture notes)

→ 21

Optimisation of the runtime for Find From the
Lecture

MakeSet(i) p[i] → i; h[i] → 1; return i

Union(i, j)

if h[j] > h[i] then swap(i, j)
p[j] → i
if h[i] = h[j] then h[i] → h[i] + 1

⇐ Tree depth (and worst-case running time for Find) in !(log n)

(Proof: lecture notes)

→ 21

Optimisation of the runtime for Find From the
Lecture

MakeSet(i) p[i] → i; h[i] → 1; return i

Union(i, j)
if h[j] > h[i] then swap(i, j)
p[j] → i

if h[i] = h[j] then h[i] → h[i] + 1

⇐ Tree depth (and worst-case running time for Find) in !(log n)

(Proof: lecture notes)

→ 21

Optimisation of the runtime for Find From the
Lecture

MakeSet(i) p[i] → i; h[i] → 1; return i

Union(i, j)
if h[j] > h[i] then swap(i, j)
p[j] → i
if h[i] = h[j] then h[i] → h[i] + 1

⇐ Tree depth (and worst-case running time for Find) in !(log n)

(Proof: lecture notes)

→ 21

Optimisation of the runtime for Find From the
Lecture

MakeSet(i) p[i] → i; h[i] → 1; return i

Union(i, j)
if h[j] > h[i] then swap(i, j)
p[j] → i
if h[i] = h[j] then h[i] → h[i] + 1

⇐ Tree depth (and worst-case running time for Find) in !(log n)

(Proof: lecture notes)

→ 21

Alternative improvement From the
Lecture

Link all nodes to the root when Find is called.

ImprovedFind(i):
r → Find(i)
v → i
while (v ↓= r) do

pv → p[v]
p[v] → r
v → pv

return r

r

i

i

Cost: amortised nearly constant (inverse of the Ackermann-function).2

2

When combined with union by size, cf. Cormen et al, Kap. 21.4

→ 22

Alternative improvement From the
Lecture

Link all nodes to the root when Find is called.

ImprovedFind(i):
r → Find(i)
v → i
while (v ↓= r) do

pv → p[v]
p[v] → r
v → pv

return r

r

i

i

Cost: amortised nearly constant (inverse of the Ackermann-function).2

2

When combined with union by size, cf. Cormen et al, Kap. 21.4

→ 22

Alternative improvement From the
Lecture

Link all nodes to the root when Find is called.

ImprovedFind(i):
r → Find(i)
v → i
while (v ↓= r) do

pv → p[v]
p[v] → r
v → pv

return r

r

ii

Cost: amortised nearly constant (inverse of the Ackermann-function).2

2

When combined with union by size, cf. Cormen et al, Kap. 21.4

→ 22

Alternative improvement From the
Lecture

Link all nodes to the root when Find is called.

ImprovedFind(i):
r → Find(i)
v → i
while (v ↓= r) do

pv → p[v]
p[v] → r
v → pv

return r

r

ii

Cost: amortised nearly constant (inverse of the Ackermann-function).2

2

When combined with union by size, cf. Cormen et al, Kap. 21.4

→ 22

Alternative improvement From the
Lecture

Link all nodes to the root when Find is called.

ImprovedFind(i):
r → Find(i)
v → i
while (v ↓= r) do

pv → p[v]
p[v] → r
v → pv

return r

r

ii

Cost: amortised nearly constant (inverse of the Ackermann-function).2

2

When combined with union by size, cf. Cormen et al, Kap. 21.4

→ 22

Alternative improvement From the
Lecture

Link all nodes to the root when Find is called.

ImprovedFind(i):
r → Find(i)
v → i
while (v ↓= r) do

pv → p[v]
p[v] → r
v → pv

return r

r

ii

Cost: amortised nearly constant (inverse of the Ackermann-function).2
2When combined with union by size, cf. Cormen et al, Kap. 21.4

→ 22

Running time of Kruskal’s Algorithm

Sorting of the edges: !(|E| log |E|) = !(|E| log |V |). 3
Initialisation of the Union-Find data structure !(|V |)
|E|⇒ Union(Find(x),Find(y)): O(|E| log |V |).

Overall !(|E| log |V |).

3because G is connected: |V | ↗ |E| ↗ |V |
2

→ 23

5. Minimum Spanning Trees

5.2. Code-Expert Exercise

→ 24

Code-Example

’Kruskal MST’ on Code-Expert

→ 25

6. MaxFlow

→ 26

6. MaxFlow

6.1. Recap Theory

→ 27

Flow
A Flow f : V ⇒ V ⇑ fulfills the
following conditions:

Bounded Capacity:
For all u, v ⇓ V : f(u, v) ↗ c(u, v).
Skew Symmetry:
For all u, v ⇓ V :
f(u, v) = ↔f(v, u).
Conservation of flow:
For all u ⇓ V \ {s, t}:

∑

v→V

f(v, u) =
∑

v→V

f(u, v).

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

Value of the flow:
|f | = ∑

v→V f(s, v).
Here |f | = 18.

→ 28

t

Flow
A Flow f : V ⇒ V ⇑ fulfills the
following conditions:

Bounded Capacity:

For all u, v ⇓ V : f(u, v) ↗ c(u, v).
Skew Symmetry:
For all u, v ⇓ V :
f(u, v) = ↔f(v, u).
Conservation of flow:
For all u ⇓ V \ {s, t}:

∑

v→V

f(v, u) =
∑

v→V

f(u, v).

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

Value of the flow:
|f | = ∑

v→V f(s, v).
Here |f | = 18.

→ 28

Flow
A Flow f : V ⇒ V ⇑ fulfills the
following conditions:

Bounded Capacity:
For all u, v ⇓ V : f(u, v) ↗ c(u, v).

Skew Symmetry:
For all u, v ⇓ V :
f(u, v) = ↔f(v, u).
Conservation of flow:
For all u ⇓ V \ {s, t}:

∑

v→V

f(v, u) =
∑

v→V

f(u, v).

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

Value of the flow:
|f | = ∑

v→V f(s, v).
Here |f | = 18.

→ 28

o

Flow
A Flow f : V ⇒ V ⇑ fulfills the
following conditions:

Bounded Capacity:
For all u, v ⇓ V : f(u, v) ↗ c(u, v).
Skew Symmetry:

For all u, v ⇓ V :
f(u, v) = ↔f(v, u).
Conservation of flow:
For all u ⇓ V \ {s, t}:

∑

v→V

f(v, u) =
∑

v→V

f(u, v).

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

Value of the flow:
|f | = ∑

v→V f(s, v).
Here |f | = 18.

→ 28

Flow
A Flow f : V ⇒ V ⇑ fulfills the
following conditions:

Bounded Capacity:
For all u, v ⇓ V : f(u, v) ↗ c(u, v).
Skew Symmetry:
For all u, v ⇓ V :
f(u, v) = ↔f(v, u).

Conservation of flow:
For all u ⇓ V \ {s, t}:

∑

v→V

f(v, u) =
∑

v→V

f(u, v).

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

Value of the flow:
|f | = ∑

v→V f(s, v).
Here |f | = 18.

→ 28

Flow
A Flow f : V ⇒ V ⇑ fulfills the
following conditions:

Bounded Capacity:
For all u, v ⇓ V : f(u, v) ↗ c(u, v).
Skew Symmetry:
For all u, v ⇓ V :
f(u, v) = ↔f(v, u).
Conservation of flow:

For all u ⇓ V \ {s, t}:
∑

v→V

f(v, u) =
∑

v→V

f(u, v).

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

Value of the flow:
|f | = ∑

v→V f(s, v).
Here |f | = 18.

→ 28

Flow
A Flow f : V ⇒ V ⇑ fulfills the
following conditions:

Bounded Capacity:
For all u, v ⇓ V : f(u, v) ↗ c(u, v).
Skew Symmetry:
For all u, v ⇓ V :
f(u, v) = ↔f(v, u).
Conservation of flow:
For all u ⇓ V \ {s, t}:

∑

v→V

f(v, u) =
∑

v→V

f(u, v).

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

Value of the flow:
|f | = ∑

v→V f(s, v).
Here |f | = 18.

→ 28

Flow
A Flow f : V ⇒ V ⇑ fulfills the
following conditions:

Bounded Capacity:
For all u, v ⇓ V : f(u, v) ↗ c(u, v).
Skew Symmetry:
For all u, v ⇓ V :
f(u, v) = ↔f(v, u).
Conservation of flow:
For all u ⇓ V \ {s, t}:

∑

v→V

f(v, u) =
∑

v→V

f(u, v).

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

Value of the flow:
|f | = ∑

v→V f(s, v).
Here |f | = 18.

→ 28

·

Flow
A Flow f : V ⇒ V ⇑ fulfills the
following conditions:

Bounded Capacity:
For all u, v ⇓ V : f(u, v) ↗ c(u, v).
Skew Symmetry:
For all u, v ⇓ V :
f(u, v) = ↔f(v, u).
Conservation of flow:
For all u ⇓ V \ {s, t}:

∑

v→V

f(v, u) =
∑

v→V

f(u, v).

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

Value of the flow:

|f | = ∑
v→V f(s, v).

Here |f | = 18.

→ 28

1

Flow
A Flow f : V ⇒ V ⇑ fulfills the
following conditions:

Bounded Capacity:
For all u, v ⇓ V : f(u, v) ↗ c(u, v).
Skew Symmetry:
For all u, v ⇓ V :
f(u, v) = ↔f(v, u).
Conservation of flow:
For all u ⇓ V \ {s, t}:

∑

v→V

f(v, u) =
∑

v→V

f(u, v).

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

Value of the flow:
|f | = ∑

v→V f(s, v).

Here |f | = 18.

→ 28

C

G

-T

Flow
A Flow f : V ⇒ V ⇑ fulfills the
following conditions:

Bounded Capacity:
For all u, v ⇓ V : f(u, v) ↗ c(u, v).
Skew Symmetry:
For all u, v ⇓ V :
f(u, v) = ↔f(v, u).
Conservation of flow:
For all u ⇓ V \ {s, t}:

∑

v→V

f(v, u) =
∑

v→V

f(u, v).

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

Value of the flow:
|f | = ∑

v→V f(s, v).
Here |f | = 18.

→ 28

Residual Network

The Residual network Gf is provided by the edges with positive residual
capacity. What does it look like for this flow network?

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

s

v1

v2

v3

v4

t
8

8

3

10

12

4

10

6

14

4

5

4
4 1 6

Residual networks provide the same kind of properties as flow networks
with the exception of permitting antiparallel edges

→ 29

Residual Network

The Residual network Gf is provided by the edges with positive residual
capacity. What does it look like for this flow network?

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7 s

v1

v2

v3

v4

t
8

8

3

10

12

4

10

6

14

4

5

4
4 1 6

Residual networks provide the same kind of properties as flow networks
with the exception of permitting antiparallel edges

→ 29

A reconstructing orig
.
FG from RG.

·: ↑
-

10

(S , Vr)

Augmenting Paths

Augmenting Path p: simple path from s to t in the residual network Gf .
Residual Capacity cf (p): the least capacity along the expansion path p

cf (p) = min{cf (u, v) : (u, v) edge in p}

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

88

8

3

10

12

44

10

66

14

4

5

4
44 111 6

Note: There can be multiple augmenting paths!
→ 30

augmenting

Augmenting Paths

Augmenting Path p: simple path from s to t in the residual network Gf .
Residual Capacity cf (p): the least capacity along the expansion path p

cf (p) = min{cf (u, v) : (u, v) edge in p}

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

88

8

3

10

12

44

10

66

14

4

5

4
44 111 6

Note: There can be multiple augmenting paths!
→ 30

Augmenting Paths

Augmenting Path p: simple path from s to t in the residual network Gf .
Residual Capacity cf (p): the least capacity along the expansion path p

cf (p) = min{cf (u, v) : (u, v) edge in p}

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

8

8

8

3

10

12

4

4

10

6

6

14

4

5

4
4

4

1

11

6

Note: There can be multiple augmenting paths!
→ 30

Augmenting Paths

Augmenting Path p: simple path from s to t in the residual network Gf .
Residual Capacity cf (p): the least capacity along the expansion path p

cf (p) = min{cf (u, v) : (u, v) edge in p}

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

8

8

8

3

10

12

4

4

10

6

6

14

4

5

4

4

4

1

1

1

6

Note: There can be multiple augmenting paths!
→ 30

Augmenting Paths

Augmenting Path p: simple path from s to t in the residual network Gf .
Residual Capacity cf (p): the least capacity along the expansion path p

cf (p) = min{cf (u, v) : (u, v) edge in p}

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

8

8

8

3

10

12

4

4

10

6

6

14

4

5

4

4

4

11

1 6

Note: There can be multiple augmenting paths!
→ 30

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V, E, c)
Output: Maximal flow f .

for (u, v) ⇓ E do

f(u, v) → 0
while Exists path p : s ↫ t in residual network Gf do

cf (p) → min{cf (u, v) : (u, v) ⇓ p}

foreach (u, v) ⇓ p do

if (u, v) ⇓ E then

f(u, v) → f(u, v) + cf (p)
else

f(v, u) → f(u, v) ↔ cf (p)

→ 31

!
15

in

00 -> -

C

j-

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gf the
expansion path of shortest possible length (e.g. with BFS)

Theorem 1
When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V, E) with source s and sink t then the number of
flow increases applied by the algorithm is in O(|V | · |E|)
⇐ Overall asymptotic runtime: O(|V | · |E|

2)

→ 32

Max-Flow Min-Cut Theorem

Theorem 2
Let f be a flow in a flow network G = (V, E, c) with source s and sink t.
The following statements are equivalent:
1. f is a maximal flow in G

2. The residual network Gf does not provide any expansion paths
3. It holds that |f | = c(S, T) for a cut (S, T) of G.

→ 33

W(3)

augmenting
-T

Application: maximal bipartite matching
Given: bipartite undirected graph G = (V, E).
Matching M : M ⇔ E such that |{m ⇓ M : v ⇓ m}| ↗ 1 for all v ⇓ V .
Maximal Matching M : Matching M , such that |M | ↖ |M ↑

| for each matching
M ↑.

→ 34

G

-

maxima

·
A B

6. MaxFlow

6.2. Quiz

→ 35

Manual Max Flow Exercise
This graph shows a flow chart that is not at maximum capacity. Run one
iteration of the Ford-Fulkerson algorithm to find the max flow.

→ 36

C

Manual Max Flow Solution

update not shown since it is not unique!
→ 37

Max Flow Question

Let an n ⇒ n chessboard be given without some squares. Describe an
e"cient algorithm to find out if the board can be completely covered with
dominoes. Then model the problem as a flow problem.

→ 38

6. MaxFlow

6.3. Old Exam Questions

→ 39

II handant

sugt !!

JACE : min sp.
tree

-> check & will
& solution

Exam Question Example

→ 40

Exam Question Example

→ 40

Exam Question Example

→ 40

Exam Question Example

→ 40

Exam Question Example

→ 40

Exam Question Example

→ 40

7. TSP

→ 41

Travelling Salesperson Problem

Problem
Given a map and list of cities, what is the shortest possible route that
visits each city once and returns at the original city?

Mathematical model
On an undirected, weighted graph G, which cycle containing all of G’s
vertices has the lowest weight sum?

→ 42

Travelling Salesperson Problem

Problem
Given a map and list of cities, what is the shortest possible route that
visits each city once and returns at the original city?

Mathematical model
On an undirected, weighted graph G, which cycle containing all of G’s
vertices has the lowest weight sum?

→ 42

Travelling Salesperson Problem

→ 43

Travelling Salesperson Problem

The problem has no known polynomial-time solution.
Many heuristic algorithms exists. They do not always return the optimal
solution.

→ 44

Travelling Salesperson Problem

The heuristic algorithm that you are asked to implement on CodeExpert
(The Travelling Student) on CodeExpert uses an MST:
1. Compute the minimum spanning tree M
2. Make a depth first search on M

The algorithm is 2-approximate, meaning that the solution it generates
has at most twice the cost of the optimal solution.
The algorithm assumes a complete graph G = (V, E, c) that satisfies the
triangle inequality: ↙v, w, x ⇓ V : c(v, w) ↗ c(v, x) + c(x, w)

→ 45

8. Outro

→ 46

General Questions?

→ 47

See you next time!

Have a nice week!

→ 48

