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General things regarding

m Many of you wrote something like:
"Additional comparisons are going to increase time complexity."

m This is not always the case!

m Some comparisons, if implemented efficiently, do not necessarily change
the time complexity.

m Time complexity classes are not measured with stopwatches, but
through analytical methods.

m The term "Runtime" can be ambiguous,
but the exercise clearly specifies asymptotic runtime.



Any questions regarding on your part?




2. Learning Objectives







Objectives

[J Understand and be able to perform the following Algorithms by hand:

[] Kruskal (MST)

[ Jarnik-Prim-Dijkstra (MST)
[ Ford-Fulkerson (Max-Flow)
[ Edmonds-Karp (Max-Flow)

[J Understand how UnionFind works and where one can use it

[J Be able to implement a “2-approximation” of the (metric) TSP problem
using MSTs and a DFS



3. Summary




Getting on the same page



Getting on the same page

m What did you cover in class?
m Is there anything that | need to be aware of?



4. Remark Bonus Exercises




Bonus Exercises

Bonus 1
It was clearly stated in the task description that standard library functions

which significantly simplify the task are not allowed. This will be graded
with 0 points.



Bonus Exercises

Bonus 1

It was clearly stated in the task description that standard library functions
which significantly simplify the task are not allowed. This will be graded
with 0 points.

Bonus 2
Here, the use of all standard library functions is explicitly allowed!
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5. Minimum Spanning Trees

5.1. Recap Theory
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Jarnik-Prim-Dijkstra Algorithm

m Finds a minimum spanning tree.

m Starts from a single node and grows.
m Uses a priority queue.

m Evaluates edges, not paths.



Algorithm Jarnik-Prim-Dijkstra(G)

Input: A connected, undirected graph G = (V| E) with weights w
Output: A minimum spanning tree T’

Initialize T = ()

Choose arbitrary vertex vg from V and add vg to T’

while V # () do
Choose edge (u,v) with smallest weight such that wisin T and visin V —T
Add v to T

return T’



Differences from Dijkstra’s Algorithm

m Jarnik-Prim-Dijkstra evaluates edges. Dijkstra evaluates paths.

m Jarnik-Prim-Dijkstra creates a minimum spanning tree. Dijkstra finds the
shortest path.

m Jarnik-Prim-Dijkstra can handle negative weights, in contrast to
Dijkstra.

The shortest path algorithm by Dijkstra can only deal with negative edge weights if it is
known that no negative cycles can occur. And the algorithm can then still have an
exponential runtime. It is therefore not practicable, if negative edges occur.



MakeSet, Union, and Find

m Make-Set(:): create a new set represented by i.
m Find(e): name of the set i that contains e.
m Union(s, ): union of the sets with names 4 and j.



MakeSet, Union, and Find

m Make-Set(:): create a new set represented by i.
m Find(e): name of the set i that contains e.
m Union(s, ): union of the sets with names 4 and j.

In MST-Kruskal:

m Make-Set(i): New tree with ¢ as root.
m Find(e): Find root of e
m Union(i, j): Union of the trees i and j.



From the
Lecture

Algorithm MST-Kruskal(G)

Input: Undirected weighted Graph G = (V, E, ¢)

Output: MST of G Y w;\l\
Sort edges by weight c(e1) < ... < c(e,,) & Wi s¥d:.: 300 . Vs
M+ 0 a \awbds fre NYIN

fori=1to|V|do ) le jaithalite s ‘\**'(’\‘U""’h Ale Cono
| MakeSet(7) sﬂ e pRon)
(s¢L¢. —*‘J“t C;‘Ls 'e
for : =1 tom do
(u,v) + e
if Find(u) # Find(v) then
Union(Find(u), Find(v))
M <+~ MU {61}
// conceptually: else D < D U {e;}

return (V, M, ¢)

[1(const Edge& el, const Edge& e2) { return el.length < e2.length; }
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. . . . From the
Running Time of Union-Find Lecture

Parent 1 2 3 4
= 27 39 4 Index 1 2 3 &

|} Union(3,4), Union(2, 3), Union(1, 2)

)

T

2 Parent 1 1 2 3
T Index 1 2 3 4
3

T

A

Tree may degenerate.. Runningtime of Find: O(n)
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Optimisation of the runtime for Find

MakeSet (i)
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From the

Optimisation of the runtime for Find e

MakeSet(i)  pli] « 4; h[i] < 1; return i

if h[j] > h[i] then swap(i, j)
Union(i, j)  plj] ¢



C. : From th
Optimisation of the runtime for Find ot

Lecture

MakeSet(i)  pli] « 4; h[i] < 1; return i

if h[j] > hl[i] then swap(i, j)
Union(i,j) plj] < i
if hli] = h[j] then h[i] «+ h[i] + 1
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C. : From th
Optimisation of the runtime for Find ot

Lecture

MakeSet(i)  pli] « 4; h[i] < 1; return i

if h[j] > hl[i] then swap(i, j)
Union(i,j) plj] < i
if hli] = h[j] then h[i] «+ h[i] + 1

= Tree depth (and worst-case running time for Find) in ©(logn)

(Proof: lecture notes)

21
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. . From the
Alternative |mprovement | Eetue

Link all nodes to the root when Find is called.

ImprovedFind@)
7 < Find(7)

R

while (v # r) do
Po < D[v]

plv] <

V4 Py

return r
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. . From the
Alternative |mprovement | Eetue

Link all nodes to the root when Find is called.

ImprovedFind(i):
7 < Find(7)

R

while (v # r) do
Po < D[v]

plv] <

V4 Py

return r

nt (inverse of the Ackermann-function).?
2When combined with union by size, cf. Cormen et al, Kap. 21.4
22



Running time of Kruskal's Algorithm

m Sorting of the edges: O(|E|log |E|) = O(|E|log |V]). *
m Initialisation of the Union-Find data structure ©(|V|)
m |E|x Union(Find(z),Find(y)): O(|E|log|V|).
Overall (| E|log |V]).

because G is connected: |V| < |E| < |V ]2

23



5. Minimum Spanning Trees

5.2. Code-Expert Exercise

24



Code-Example

'Kruskal MST’ on Code-Expert

6
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25
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5o

EdgeSet kruskal(const EdgeSet& edges) {
/3 +/

// check maximum node number used, for kruskal algorithm
size_t max_node_number = 0;
for (const auto e: edges){
auto mn = std::max(e.nodel,e.node2); // e = {nodel, node2}
max_node_number = std::max(max_node_number,mn);

// sort edges by length
// Note: The "<" operator for edges does not sort them by length!
std::vector<Edge> sorted_edges(edges.begin(), edges.end());
// ~--misleading name - they're not sorted yet
std::sort(sorted_edges.begin(), sorted_edges.end(),
[](const Edge& el, const Edge& e2) { return el.length < e2.length; 1);
// ARA Lo fear not - this is just a lambda function - - - - - AnA

// initialize union find datastructure
UnionFind uf(max_node_number+1); // create the array for the unionfind data structure

// build mst by greedily adding edges from short to long.
EdgeSet mst_edges;
for (auto e : sorted_edges) {
// unify the two nodes connected by this edge
if (uf.unify(e.nodel, e.node2)) { // unify() returns false IF nodel node2 are
// already in the same set/union
// edge start and end nodes where not in same component already => add edge to mst
mst_edges.insert(e);
3
3

return mst_edges;

b 5
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6. MaxFlow

6.1. Recap Theory
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A Flow f : V x V — R¥ulfills the
following conditions:



AFlow f : V xV — R fulfills the
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m Bounded Capacity:
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£le

m Bounded Capacity: @)
For all w,v € V:iif(u,v) <e(u,). @)—__—————’
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AFlow f : V xV — R fulfills the
following conditions:

m Bounded Capacity: -
Forall u,v € Vi f(u,v) < c(u,v). S-,z @
m Skew Symmetry: /

Forall u,v € V:

f(u’ U) - _f(v7u)'
m Conservation of flow:

Forallu e V'\ {s,t}:

Zf(v,u) = Zf(u7v)

veV veV

28



Flow
AFlow f : V xV — R fulfills the
following conditions:
12/12

V1 V3
m Bounded Capacity: s L 14/20

Forall u,v € Vi f(u,v) < c(u,v).
m Skew Symmetry:
Forall u,v € V: 10/13 /4
flu,v) = —f(v,u). - 10/14 b
m Conservation of flow:
Forallu e V' \ {s,t}: Value of the flow:

Zf(v,u) = Zf(u7v)

veV veV

s 4/4 6/7 t
419

28



Flow

AFlow f : V xV — R fulfills the
%0
6/7 t

following conditions:
4/4

m Bounded Capacity:

Forall u,v € Vi f(u,v) < c(u,v).
m Skew Symmetry:

Forall u,v € V:

f(u’ U) = _f(v7u)'

m Conservation of flow:

Forallu € V' \ {s,t}: Value of the flow:
1= Zoev FEEY
> flou) =3 flu,v).
veV veV

28



AFlow f : V xV — R fulfills the

following conditions:

m Bounded Capacity:

Forall u,v € Vi f(u,v) < c(u,v).
m Skew Symmetry:

Forall u,v € V:

f(u’ U) - _f(v7u)'
m Conservation of flow:

Forallu e V'\ {s,t}:

Zf(v,u) = Zf(u7v)

veV veV

12/12

V1 v3
V %0
S 4/4 6/7 t
4/9
lm A
(%) V4
10/14

Value of the flow:

[fl=20ev f(s,0).
Here |f| = 18.

28



Residual Network

The Residual network G is provided by the edges with positive residual
capacity. What does it look like for this flow network?

12/12

V] ———— U3
AN
5 4/4 6/7 t
4/9
lm 4/4
(] Vg
10/14

Residual networks provide the same kind of properties as flow networks
with the exception of permitting antiparallel edges



i At O\, FR Lo RGh.
Residual Network 0 recons D o)

The Residual network G is provided by the edges with positive residual
capacity. What does it look like for this flow network?

12/12

Residual networks provide the same kind of properties as flow networks
with the exception of permitting antiparallel edges

10/13

10/14
(s ¢ "rﬁ.)
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Augmenting Paths

Augmenting Path p: simple path from s to ¢ in the residual network G;.
Residual Capacity ¢ (p): the least capacity along the %&-@-ﬁ ath p
¢;(p) = min{e;(u,v) : (u,0) edge in p}

Note: There can be multiple augmenting paths!



Augmenting Paths

Augmenting Path p: simple path from s to ¢ in the residual network G;.
Residual Capacity ¢ (p): the least capacity along the expansion path p

cr(p) = min{cs(u,v) : (u,v) edge in p}

12/12
V1 —) Vs
%ﬁif////” \\\\\iféjo
S 414 6/7 t
4/9
1&?12\\\5, 4/4
(%] —) Vy
10/14

Note: There can be multiple augmenting paths!



Augmenting Paths

Augmenting Path p: simple path from s to ¢ in the residual network G;.
Residual Capacity ¢ (p): the least capacity along the expansion path p

cr(p) = min{cs(u,v) : (u,v) edge in p}

8 U1 (—12 U3 ‘\14

S 4 6 t
3 5
% 4 /
10 V2 v—) Uy

10

Note: There can be multiple augmenting paths!
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Augmenting Paths

Augmenting Path p: simple path from s to ¢ in the residual network G;.
Residual Capacityey(p): the least capacity along the expansion path p

cr(p) = min{cs(u,v) : (u,v) edge in p}

14

Note: There can be multiple augmenting paths!



Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V, E, ¢) 12/12
Output: Maximal flow f. 2%1)1 = s \'l:/j‘)
for (u,v) € E do o ;77 ¢
N CRORS N
- 10/13 4/4
while Exists path p : s ~» ¢ in residual network Gy do o
AN

cf(p) < min{cs(u,v) : (u,v) € p}
foreach (u,v e@do v
if (u,v) € E then
C flu,v) = f(u,v)Ger(p
else
f(v,u) < f(ua U) - Cf(p)

31



Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in G, the
expansion path of shortest possible length (e.g..with BFS)

When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V, E) with source s and sink t then the number of

flow increases applied by the algorithm is in O(|V| - |E|)
= Overall asymptotic runtime: O(|V |- |E|?)



Max-Flow Min-Cut Theorem

Let f be a flow in a flow network G = (V, E, ¢) with source s and sink t.
The following statements are equivalent:

1. fisa max:malﬂow inG | “"‘i 2
~—9 2. The residual network Gy does not provide any exp&nsion ffaths
3. It holds that | f| = ¢(S,T) for a cut (S,T') of G.

33



Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, E).

Matching M: M C E suchthat |{me M :vem}| <1lforallveV.
Maximal Matching M: Matching M, such that [M| > |M'| for each matching

M’

\
/@
-~

A O

v
A
|



6. MaxFlow

6.2. Quiz

35



Manual Max Flow Exercise

This graph shows a flow chart that is not at maximum capacity. Run one
iteration of the Ford-Fulkerson algorithm to find the max flow.

6/0




Manual Max Flow Solution

update not shown since it is not unique!



Max Flow Question

Let an n x n chessboard be given without some squares. Describe an
efficient algorithm to find out if the board can be completely covered with
dominoes. Then model the problem as a flow problem.



6. MaxFlow

6.3. Old Exam Questions

¢

CE: Wm'a Se. Fren

— ek & oy
Sola | o~
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Exam Question Example

Gegeben ist das folgende Flussnetzwerk G
mit Quelle s und Senke t. Die einzelnen Ka-
pazitaten ¢; und Flisse ¢; sind an den Kan-
ten angegeben als ¢;|c;. Geben Sie den Wert
des Flusses f an.

212
U —— w
2|3/‘ \2|‘5
s (\ /]3 t
m /
v

Provided in the following is a flow
network G with source s and sink t.
Capacities ¢; and flows ¢; are provided
at the edges as ¢;|c;. Provide the value
of the flow f.

Ifl =

40



Exam Question Example

Gegeben ist das folgende Flussnetzwerk G
mit Quelle s und Senke t. Die einzelnen Ka-
pazitaten ¢; und Flisse ¢; sind an den Kan-
ten angegeben als ¢;|c;. Geben Sie den Wert
des Flusses f an.
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Provided in the following is a flow
network G with source s and sink t.
Capacities ¢; and flows ¢; are provided
at the edges as ¢;|c;. Provide the value
of the flow f.

If1=|6

40



Exam Question Example

Zeichnen Sie nun das Restnetzwerk G zu
obigem Fluss und markieren Sie darin ei-
nen Erweiterungspfad p. Geben Sie den Wert
¢s(p) der Restkapazitat des Erweiterungs-
pfades p im Restnetzwerk G an.

Draw the residual network G to the flow
above and mark an augmenting path p.
Provide the rest capacity c;(p) of the
path p in the rest network Gy.

les(P)] =

40




Exam Question Example

Zeichnen Sie nun das Restnetzwerk G zu Draw the residual network G to the flow
obigem Fluss und markieren Sie darin ei- above and mark an augmenting path p.
nen Erweiterungspfad p. Geben Sie den Wert Provide the rest capacity c;(p) of the
¢s(p) der Restkapazitat des Erweiterungs- path p in the rest network Gy.

pfades p im Restnetzwerk G an.

w——(w
/\/ o
cr(p) = 1

40




Exam Question Example

Woran erkennen Sie, ob Sie den maximalen How do you see if you have found the
Fluss gefunden haben? maximum flow?

<— 40



Exam Question Example

Woran erkennen Sie, ob Sie den maximalen How do you see if you have found the
Fluss gefunden haben? maximum flow?

Found the maximum flow if:
The residual network does not have any more augmenting path.
Alternative: Identify a cut with |e(S,T)|=|f].

<— 40



7. TSP




Travelling Salesperson Problem

Given a map and list of cities, what is the shortest possible route that
visits each city once and returns at the original city?



Travelling Salesperson Problem

Given a map and list of cities, what is the shortest possible route that
visits each city once and returns at the original city?

Mathematical model

On an undirected, weighted graph G, which cycle containing all of G's
vertices has the lowest weight sum?



Travelling Salesperson Problem



Travelling Salesperson Problem

m The problem has no known polynomial-time solution.

m Many heuristic algorithms exists. They do not always return the optimal
solution.



Travelling Salesperson Problem

m The heuristic algorithm that you are asked to implement on CodeExpert
(The Travelling Student) on CodeExpert uses an MST:

1. Compute the minimum spanning tree M
2. Make a depth first search on M

m The algorithm is 2-approximate, meaning that the solution it generates
has at most twice the cost of the optimal solution.

m The algorithm assumes a complete graph G = (V, E, ¢) that satisfies the
triangle inequality: Vo, w,z € V : ¢(v,w) < ¢(v, z) + c(x, w)



8. Outro




General Questions?



See you next time!

Have a nice week!



