
Datastructures and Algorithms
Dynamic Programming

Adel Gavranović — ETH Zürich — 2025

Overview

Learning Objectives
Dynamic Programming

Recap Theory
Example: Longest Common Subse-
quence
Example: Palindromes

Summary
Code-Expert Exercise
From the previous week

Maxflow Theory Recap
TSP

n.ethz.ch/~agavranovic

 Material

 Webpage

 Mail

1

https://n.ethz.ch/~agavranovic/download/Courses/25-FS-Datastructures-and-Algorithms/
https://n.ethz.ch/~agavranovic
mailto:adel.gavranovic@inf.ethz.ch

1. Follow-up

2

Follow-up from last session

(Slide 29) "Is it possible to reconstruct the (entire) original flow network
given its residual network?"

Probably yes, but probably needs the assumption that s only has
outgoing flows and t only has incoming flows.

3

2. Feedback regarding code expert

4

General things regarding code expert

5

Any questions regarding code expert on your part?

6

3. Learning Objectives

7

Objectives

□ Understand what Dynamic Programming is all about
□ Be able to solve a problem using the concepts from Dynamic

Programming

8

4. Summary

9

Getting on the same page

What did you see in the lectures up to now?

10

5. Dynamic Programming

11

5. Dynamic Programming

5.1. Recap Theory

12

Dynamic Programming: Idea

1. Divide a complex problem into a reasonable number of sub-problems;
Partial solutions are combined to more complex ones
= Top-down recursion ("assume the subproblems")

2. Identical problems will be computed only once
= Memoization

- The idea is to simply store the results of subproblems so that we do not
have to re-compute them when needed later.

3. Eliminate recursion
= Bottom-up algorithms ("combine the subproblems")

Optionally, not always possible: Save space by storing as little as possible
in the DP table

13

Dynamic Programming: Idea

Question: Which of the following Fibonacci implementations would perform
better?

int fib(int n) {
if (n <= 1) {

return n;
}
return fib(n - 1) +

fib(n - 2);
}

int fib2(int n) {
std::vector<int> f(n+1);
f[0] = 0;
f[1] = 1;
for(int i=2;i<=n;++i){

f[i] = f[i-1]+f[i-2];
}
return f[n];

}

int fib3(int n) {
if (n <= 1) {

return n;
}
int a = 0;
int b = 1;
for(int i=2;i<=n;++i){

int a_old = a;
a = b;
b += a_old;

}
return b;

}

14

Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by utilizing
the solutions of sub-problems. The problem provides optimal
substructure.
Divide-And-Conquer algorithms (such as Mergesort): sub-problems are
independent; their solutions are required only once in the algorithm.
DP: sub-problems are dependent. The problem is said to have
overlapping sub-problems that are required multiple-times in the
algorithm.
In order to avoid redundant computations, results are tabulated. For
sub-problems there must not be any circular dependencies.

15

Memoization vs. Dynamic Programming

Memoization:

Top-down approach
Recursion with caching of results
Lazily computes values on-demand
Can be more efficient if only a few values are needed

Dynamic Programming:

Iterative bottom-up approach
Builds solutions from smaller subproblems
Computes all values in a predefined order
Can be more efficient if all values are needed

16

Problem Without Optimal Substructure

Question: Problem Without Optimal Substructure?

Example: Longest (simple) path

a

b c

d

ef

17

Problem Without Optimal Substructure: Longest Path

a

b c

d

ef

Longest path from, e.g. a to e is a, b, c, d, e, i.e. via c

But the longest path from a to c is not a, b, c (and analogously for c to e)
⇒ Combining optimal subsolutions does not yield an optimal overall

solution
⇒ The problem does not have optimal substructure

18

Memoization vs. Dynamic Programming

Question
In which of the following cases might memoization be significantly more
efficient than dynamic programming?

1. When all values are required for the final result
2. When only a few values are required for the final result
3. When the problem has overlapping subproblems
4. When the problem can be solved iteratively

19

Dynamic Programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the subproblems / the DP table: What are the dimensions
of the table? What is the meaning of each entry?
Recursion: Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on others?

Computation order (topological order): In which order can entries be
computed so that values needed for each entry have been determined in
previous steps?
Solution and Running Time: How can the final solution be extracted
once the table has been filled? Running time of the DP algorithm.

21

Review

Choose which characteristics a problem needs to have for a dynamic
programming approach to be appropriate:

Optimal substructure
Problem solving for Real-time
problems
Independent sub-problems
Memory-efficient solution
Recursive structure

Overlapping sub-problems
Circular dependencies
Tabulation or memoization
potential
Small state space

22

Example: Coin Change Problem

Definition
Given a set of coin denominations and a target amount, find the minimum
number of coins needed to make the target amount. Note that the same
coin denomination can be used more than once.

Example
Given coins = [1, 2, 4] and target amount = 8, the solution is 2 (4 + 4).

Remark
When the problem does not have a solution, the algorithm returns -1.

23

Coin Change Problem

Task
Design a recursive algorithm to solve the task.

24

Coin Change: Recursive Solution

int coin_change(const std::vector<int>& coins, int amount) {
if (amount == 0) {

return 0;
}
int min_coins = INT_MAX;
for (int coin : coins) {

if (amount - coin >= 0) {
int temp = coin_change(coins, amount - coin);
if (temp != -1) {

min_coins = std::min(min_coins, temp + 1);
}

}
}
return min_coins == INT_MAX ? -1 : min_coins;

} 25

Coin Change Problem

Task
Design a DP algorithm to solve the task.

26

Coin Change: Dynamic Programming

We can use dynamic programming to solve this problem by building a
one-dimensional array where dp[i] represents the minimum number of
coins required to make the amount i:

Set each element in dp to a value larger than the maximum possible
number of coins.
Set dp[0] = 0.
For each coin c, iterate through the array and update dp[i] if
dp[i-c]+1 has a lower value.

27

Coin Change: DP Solution

int coin_change(const std::vector<int>& coins, int amount) {
std::vector<int> dp(amount + 1, amount + 1);
dp[0] = 0;
for (int coin : coins) {

for (int i = coin; i <= amount; ++i) {
dp[i] = std::min(dp[i], dp[i - coin] + 1);

}
}
return dp[amount] <= amount ? dp[amount] : -1;

}

28

Coin Change: DP Visualisation

Coins: [1, 4, 5] Target: 8

i 0 1 2 3 4 5 6 7 8
dp[i] 0 1 2 3 1 1 2 3 2

After processing the third and last coin. Answer: dp[8] = 2.

29

Coin Change: Time Complexity

Task
Compare the time complexity of the DP algorithm with that of the naive
recursive algorithm

Naive Algorithm
The naive algorithm has an exponential time complexity of O(cn), where c is
the number of coin denominations and n is the target amount.

Dynamic Programming Algorithm
The dynamic programming algorithm has a polynomial time complexity of
O(c · n), where c is the number of coin denominations and n is the target
amount.

30

5. Dynamic Programming

5.2. Example: Longest Common Subsequence

31

DP Example: Longest Common Subsequence

Definition
A subsequence of a sequence is generated by removing some or none of the
elements of the original sequence. For example, "AC" is a subsequence of
"ABC".

Problem
Given two sequences X and Y, find the length of the longest common
subsequence of X and Y.

32

Concrete Problem Instance

Example
X: PROGRAM
Y: ARMOR
X: PROGRAM
Y: ARMOR

Answer?
length 3: ROR

33

Subproblems?

String X of length m and string Y of length n:
Which subproblems are there?

if last character matches: +1 and make both strings shorter by one
make X shorter by one, Y the same
make Y shorter by one, X the same

34

Recursive Solution

int lcs(const std::string& X, const std::string& Y, int m, int n) {
if (m == 0 || n == 0) {

return 0;
}
if (X[m - 1] == Y[n - 1]) {

return 1 + lcs(X, Y, m - 1, n - 1);
} else {

return std::max(lcs(X, Y, m - 1, n),
lcs(X, Y, m, n - 1));

}
}

35

Dynamic Programming

Instead, we can use dynamic programming to solve this problem by building
a table to store the lengths of the longest common subsequences of the
prefixes of X and Y:

Update the table values from the top left to the bottom right.
If the characters at the current position match, set the current cell value
to the diagonal cell value incremented by one, or one if it doesn’t exist.
If they don’t match, set the current cell value to the maximum of the
left and top cell values, or zero if they don’t exist.

36

DP Table

X/Y P R O G R A M
A
R
M
O
R

37

Solution Reconstruction

find LCS (reconstruct solution)?

38

Time Complexity

Question
How does the time complexity of the DP algorithm compare to the naive
recursive algorithm?

39

5. Dynamic Programming

5.3. Example: Palindromes

40

DP Example: Palindromes

A palindrome is a word that reads the same way in either forward or reverse
direction. Example: RACECAR.
Formally: ⟨a1, . . . , an⟩ is a palindrome ⇐⇒

either n = 1, or
a1 = an and ⟨a2, . . . , an−1⟩ is a palindrome 1

We use an array A[1..n] to store a string of length n. A subarray A[i..j] is
called palindrome in A if it is a palindrome. Examples:

[L, A, R, A] contains palindromes A (2x), R, L and ARA

[A, N, N, A] contains palindromes A (2x), N (2x), NN and ANNA

1for n = 2 we only require a1 = a2
41

DP Example: Palindromes

Task 1.1: Describe an efficient dynamic programming algorithm that finds all
pairs (i, j) where A[i] . . . A[j] is a palindrome.
Examples:

[L, A, R, A] −→ (1, 1), (2, 2), (3, 3), (4, 4), (2, 4)
[A, N, N, A] −→ (1, 1), (2, 2), (3, 3), (4, 4), (2, 3), (1, 4)

Task 1.2: What is the running time of your solution?
Try to find a DP algorithm!
How does the table look like?
How do we traverse the table?
How do we compute an entry?

42

Palindromes Task 1.1: Solution

R A C E C A R
R 1 0 0 0 0 0 1
A - 1 0 0 0 1 0
C - - 1 0 1 0 0
E - - - 1 0 0 0
C - - - - 1 0 0
A - - - - - 1 0
R - - - - - - 1

43

Palindromes Task 1.1: Solution
Definition of the DP table: We use an n× n table T with entries that are 0
or 1. For 1 ≤ i ≤ j ≤ n let T [i, j] = 1 ⇐⇒ ⟨A[i], . . . , A[j]⟩ is a palindrome.
Computation of an entry: We distinguish three cases.

1. 1 ≤ i = j ≤ n: A[i] is a palindrome of length 1, thus we set
T [i, j] = T [i, i] = 1

2. 1 ≤ i ≤ n, j = i + 1 ≤ n: We consider palindromes of length 2, and set
T [i, i + 1] = 1 ⇐⇒ A[i] = A[i + 1]

3. 1 ≤ i ≤ n, i + 1 < j ≤ n: Let ⟨A[i], . . . , A[j]⟩ be the considered sequence.
By definition it is a palindrome if A[i] = A[j] and additionally,
⟨A[i + 1], . . . , A[j − 1]⟩ is a palindrome. Thus we set

T [i, j] = 1 ⇐⇒ A[i] = A[j] and T [i + 1, j − 1] = 1
44

Palindromes Task 1.1: Solution
Example: A = RACECER is not a palindrome, but contains non-trivial
palindromes CEC and ECE.

R A C E C E R
R 1 0 0 0 0 0 0
A - 1 0 0 0 0 0
C - - 1 0 1 0 0
E - - - 1 0 1 0
C - - - - 1 0 0
E - - - - - 1 0
R - - - - - - 1

45

Palindromes: Solution

Task 1.2: What is the running time of the algorithm?
The table has n2 entries. We must effecively fill n(n+1)

2 ∈ Θ(n2) of these.
Each table entry can be computed in time O(1).
Hence, filling the table is done in O(n2) steps.

Task 2.1: Describe how a longest palindrome in A can be extracted from the
DP table constructed before.
Traverse table in opposite order of filling, starting from the entry T [1, n]. If
T [i, j] = 1, then A[i] . . . A[j] is a palindrome. The first such entry found is a
longest palindrome.
Task 2.2: What is the running time of the reconstruction?
Same as before: O(n2).

46

6. Summary

47

Recursive Problem-Solving Strategies From the
Lecture

Brute Force
Enumeration

Backtracking Divide and
Conquer

Dynamic
Programming

Recursive Enumer-
ability

Constraint Satisfac-
tion, Partial Valida-
tion

Optimal
Substructure

Optimal
Substructure,
Overlapping Sub-
problems

DFS, BFS, all Permu-
tations, Tree Traver-
sal

n-Queen,
Sudoku,
m-Coloring, SAT-
Solving, naive TSP

Binary Search,
Mergesort, Quick-
sort, Hanoi Towers,
FFT

Bellman Ford, War-
shall, Rod-Cutting,
LAS, Editing Dis-
tance, Knapsack
Problem DP

48

7. Code-Expert Exercise

49

Code-Example

"Exam Q: Maximum sum increasing subsequence (DP)" on Code-Expert

50

8. From the previous week

8.1. Maxflow Theory Recap

51

Flow

A Flow f : V × V → R fulfills the
following conditions:

Bounded Capacity:
For all u, v ∈ V : f(u, v) ≤ c(u, v).
Conservation of flow:
For all u ∈ V \ {s, t}:∑

v∈V

f(v, u) =
∑
v∈V

f(u, v).

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

Value of the flow:
|f | =

∑
v∈V f(s, v).

Here |f | = 18.

52

Residual Network

The Residual network Gf is provided by the edges with positive residual
capacity. What does it look like for this flow network?

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7 s

v1

v2

v3

v4

t
8

8

3

10

12

4

10

6

14

4

5

4
4 1 6

Residual networks provide the same kind of properties as flow networks
with the exception of permitting antiparallel edges

53

Augmenting Paths

Augmenting Path p: simple path from s to t in the residual network Gf .
Residual Capacity cf (p): the least capacity along the augmenting path p

cf (p) = min{cf (u, v) : (u, v) edge in p}

s

v1

v2

v3

v4

t

8/16

10/13

12/12

10/14

14/20

4/4

4/9
4/4 6/7

88

8

3

10

12

44

10

66

14

4

5

4
44 111 6

Note: There can be multiple augmenting paths!
54

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V, E, c)
Output: Maximal flow f .

for (u, v) ∈ E do
f(u, v)← 0

while Exists path p : s⇝ t in residual network Gf do
cf (p)← min{cf (u, v) : (u, v) ∈ p}
foreach (u, v) ∈ p do

if (u, v) ∈ E then
f(u, v)← f(u, v) + cf (p)

else
f(v, u)← f(v, u)− cf (p)

55

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gf the
augmenting path of shortest possible length (e.g. with BFS)

Theorem 1
When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V, E) with source s and sink t then the number of
flow increases applied by the algorithm is in O(|V | · |E|)
⇒ Overall asymptotic runtime: O(|V | · |E|2)

56

Max-Flow Min-Cut Theorem

Theorem 2
Let f be a flow in a flow network G = (V, E, c) with source s and sink t.
The following statements are equivalent:

1. f is a maximal flow in G

2. The residual network Gf does not provide any augmenting paths
3. It holds that |f | = c(S, T) for a cut (S, T) of G.

57

Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, E).
Matching M : M ⊆ E such that |{m ∈M : v ∈ m}| ≤ 1 for all v ∈ V .
Maximal Matching M : Matching M , such that |M | ≥ |M ′| for each matching
M ′.

58

8. From the previous week

8.2. TSP

59

Travelling Salesperson Problem

Problem
Given a map and list of cities, what is the shortest possible route that
visits each city once and returns at the original city?

Mathematical model
On an undirected, weighted graph G, which cycle containing all of G’s
vertices has the lowest weight sum?

60

Travelling Salesperson Problem

61

Travelling Salesperson Problem

The problem has no known polynomial-time solution.
Many heuristic algorithms exists. They do not always return the optimal
solution.

62

Travelling Salesperson Problem

The heuristic algorithm that you are asked to implement on CodeExpert
(The Travelling Student) on CodeExpert uses an MST:

1. Compute the minimum spanning tree M
2. Make a depth first search on M

The algorithm is 2-approximate, meaning that the solution it generates
has at most twice the cost of the optimal solution.
The algorithm assumes a complete graph G = (V, E, c) that satisfies the
triangle inequality: ∀v, w, x ∈ V : c(v, w) ≤ c(v, x) + c(x, w)

63

9. Outro

64

General Questions?

65

See you next time!

Have a nice week!

66

	Follow-up
	Feedback regarding codeexpertcolorcodeexpertcolorcode expert
	Learning Objectives
	Summary
	Dynamic Programming
	Recap Theory
	Example: Longest Common Subsequence
	Example: Palindromes

	Summary
	Code-Expert Exercise
	From the previous week
	Maxflow Theory Recap
	TSP

	Outro

