T
(]] ___]=
[T =] [=pesi—[e=jaaias]

- Rt
=] E]

|
=

ES

Datastructures and Algorithms

Greedy Algorithms, Huffman Coding (Trees), Parallel Programming

Adel Gavranovic — ETH Zurich — 2025

Learning Objectives
Huffman Coding
Greedy Choice E
In-Class-Exercise (practical)
Parallel Programming

Old Exam Questions n.ethz.ch/~agavranovic
Hints for current tasks

Webpage

1. Learning Objectives

[J Be able to build a Huffman Coding Tree using the algorithm outlined in
the session

[J Be able to reason about simple multithreaded programs

[J Understand the different aq'roaches to modelling performance of
parallel programs (Amdahl, Gustafson)

2. Summary

Getting on the same page

Getting on the same page

m What did you see in the lectures up to now?

3. Huffman Coding

, From the
Huffman’'s Idea Lecture

Tree construction bottom up

m Start with the set C of code
words

c '[k a5 b1z c2 dl6 e9 5 Y

Huffman’'s Idea

Tree construction bottom up
m Start with the set C of code

words

m Replace iteratively the two
nodes with frequency
by a .

a45 b3 12 di6

From the
Lecture

e9 f5

Huffman’'s Idea

Tree construction bottom up

m Start with the set C of code
words

m Replace iteratively the two
nodes with smallest
frequency by a new parent
node. a4s b3 12 die

From the
Lecture

14

/\

e9 f5

Huffman’'s Idea

Tree construction bottom up

m Start with the set C of code
words

m Replace iteratively the two
nodes with smallest 25
frequency by a new parent / \

node. a4s b3 12 die

From the
Lecture

14

/\

e9 f5

Huffman’'s Idea

Tree construction bottom up

m Start with the set C of code
words

m Replace iteratively the two
nodes with smallest

frequency by a new parent
node.

a:45

N\

b3 ¢12

d:16

30

From the
Lecture

/\

e9 f5

Huffman’'s Idea

Tree construction bottom up

m Start with the set C of code
words

m Replace iteratively the two
nodes with smallest

frequency by a new parent
node.

a:45

/ \30
/\

From the
Lecture

/\

b3 c¢12 di16 e9 f5

Huffman’'s Idea

Tree construction bottom up

m Start with the set C of code
words

m Replace iteratively the two
nodes with smallest

frequency by a new parent
node.

a:

From the
Lecture

Fa
le 1 s

b13 c12 die e9 f5

b: 011
09N
o\ 09

From the
D Lecture

Algorithm Huffman(C)

Input: code words c € C
Output: Root of an optimal code tree
Jasele]

n <+ |C|
Q<+ C
fori=1ton—1do
allocate a new node z
z.left <— ExtractMin(Q) // extract word with minimal frequency.
(z.right + ExtractMin(Q)
z.freq < z.left.freq + z.right.freq

Insert(Q, z)
return ExtractMin(Q))

4. Greedy Choice

Recap: Greedy Choice

Question:
What properties must an optimization problem with a recursive solution
have in order to be solvable with a greedy algorithm?

Also, give an example and a counterexample.

Recap: Greedy Choice

A problem with a recursive solution can be solved with a greedy algorithm
if it has the following properties:

m The problem has optimal substructure: the solution of a problem can be
constructed with a combination of solutions of sub-problems.

m The problem has the greedy choice property: The solution to a problem
can be constructed, by using a local property that does not depend on
the solution of the sub-problems.

Examples: Fractional knapsack problem, Huffman coding
Counterexamples: Knapsackproblem, optimal binary search tree.

5. In-Class-Exercise (practical)

Complement the DP implementation to compute an
optimal search tree. — CodeExpert

6. Parallel Programming

Parallel Programming

Parallel Programming = perform multiple computations in parallel
mats
Some terminology

m Tasks +2
are computations that need to be done. Independer\t comgutatidns can

be done in parallel. -

m Threads
are parallel executions, that execute tasks.

m Shared resources
anything that is needed to perform tasks, but must be shared because

there isn’t a resource per task. (Not the focus for this week)

Forking Threads

P—

| |)
N\ ™ @
RTINS
Forking a thread means starting a new, concurrent

computation \\

m Main thread forks a new thread ~

m Forking is done by creating a new thread
object std: :thread(func, args...)

m Main thread is the parent of its child thread
m Each thread can fork further threads

time

\

Thread Lifecycle (simplified)

schedule

terminate deconstruct

ot sleeping running ——"€ 4 stopped ———UC,

pause

The operating system’s scheduler decides
m which thread can execute next (schedule)
m on which core to execute

m when to pause/sleep again

Switching threads on the processor, which puts the current thread to sleep
and wakes up another one, is called context switching.

Join and Detach D detmdh

other_thread.join() means waiting until
other_thread has finished execution.

m The joining thread will sleep until P

other_thread terminated (if it already did, no SN Ysrerd
sleeping is necessary)

.'o\n(\ —

other thread.detach() indicates that no thread etach ok X 3

will wait for other_thread to finish execution sleep ®

m Useful for nonterminating processes (e.g.
servers), and reactive systems (e.g. GUIs)

m Terminates alongside the main thread at the
latest (int main())

join

C++ Threads

void chello(unsigned id):
std::cout << "hellgZTrom " << id << "\n'";

int main()
std: :vecfor<std::thread> tv(3);
unsigne@ id = 0;
for (gfito& t : tv)d

'tfﬂstd::thread(hello, ++id)); ~=)

std::cout << "hello from main\n";
for (auto& t : tv)§
¢ t-3oin0);

From the
Lecture

ork

join

My From th
l ondeterminis P

One execution:

hello from main
hello from 1
hello from 2
hello from 3

Other execution:

hello from 2
hello from main
hello from 1
hello from 3

Other execution:

hello from main

hello from 1

hello fromfhello from 2
3

Technical Details |

m Forking a function that takes a reference requires std: :ref upon thread
construction

Technical Details |

m Forking a function that takes a reference requires std: :ref upon thread
construction

void calc(std::vector<int>& very_long_vector) {

// doing funky stuff with very_long_vector
b

// main
std: :vector<int> v(1000000000) ;

std::thread ti(calc, stdref{w)); // Compiler error w/o std::ref
std::thread t2([&v]{ calc(v)};.}); // Alternative

Technical Details I

m Threads cannot be copied

Technical Details I

m Threads cannot be copied

// -—— Error ---
std::thread ti(hello);
std: :thread t2;

t2 = t1; // Compiler error
tl.join();

// --- OK -—-
std: :thread ti(hello);
std: :thread t2;

t2 = std::move(tl); // OK
t2.join();

m Also relevant if threads are to be stored in containers
<— 21

Technical Details

Also see the corresponding “Exercise Class Example” on Code Expert with
further technical details

Quiz

void print(char c¢); // Output character c

\}
L

int main() {
std::thread t(A,'A"); € f
t.join();
}

_ 0 hoﬁl\()

'Void A(char valde) {—\ -

\ if (value != 'D') { . A
gtd::thread t(A, value + 1);z
print(value);

.join(J; po

PA
'B'
ible outbut(s)?, ..
Fo_'\o'\
e

-

A

RAC

cgﬂ‘ 23

void print(char c¢); // Output character c

void A(char value) {
if (value '= 'D') {
std::thread t(A, value + 1);
print(value);
t.join();
}
}

possible output(s)?

ABC, ACB, BAC, BCA, CAB, CBA

int main() {
std: :thread t(A,'A');
t.join();

}

Parallel Performance

Given
m fixed amount of computing work W (number computing steps)
m Sequential execution time T}
m Parallel execution time on p CPUs T,

\ runtime speedup efficiency
T,=Ti/p S,=p E,=1
T,>Ti/p S,<p E, <1
T,<Ti/p S,>p E,>1

perfection (linear)
loss (sublinear)
sorcery (superlinear)

24

From the
Amdahl vs. Gustafson L@

Amdahl Gustafson
— —
p=4 p=4

Amdahl vs. Gustafson, or why do we care?

Amdahl | Gustafson
pessimist | optimist
strong scaling | weak scaling

Amdahl vs. Gustafson, or why do we care?

Amdahl | Gustafson
pessimist | optimist
strong scaling | weak scaling

= need to develop methods with smallest sequential protion possible.

From the
Performance Model Lecture

- DAG™

m 73 work: time for executing total work on Task graph:

—
one processor
m 7,: Execution time on p processors

m T, span: critical path, execution time on
oo processors. Longest path from root to
sink.

m 7T /T,.: Parallelism: wider is better
m Lower bounds:

T,\> TZ2% eWork law
T,> T, Span law

From the
Greedy Scheduler Lecture

Greedy scheduler: at each time it schedules as many available tasks as
possible.

On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work Ty and span T, in
time

Tp S Tl/p+Too

Quiz: Scheduling

The following figure shows a task-graph of some algorithm. The number in
each of the nodes denotes the execution time per task step.

4 \‘z.
< N\
2 2 2
VARV, OZ VARV, VARV,
11y ©) 1 1 1
pvav4 A4 pVv4
2 2

Quiz: Scheduling

The following figure shows a task-graph of some algorithm. The number in
each of the nodes denotes the execution time per task step.

/8\
4 4
7 N\ < N\
2 2 2 2
VARV, VAR, VARV, VARV,
1 1 1 1 1 1 1 1
pvav4 \ A4 pVv4

2 2 2 2
N N
4 4

29

Quiz: Scheduling

The following figure shows a task-graph of some algorithm. The number in
each of the nodes denotes the execution time per task step.

8
4/ \‘z.
7 N\ < N\
2 2 2 2
VARV, VAR, VARV, VARV,

1 1 1 1 1 1 1 1
N/ \ Y/ N/ N/

2\4\/2 2\4/2
TS T, <Ti/p+ Ts

Quiz: Scheduling

The following figure shows a task-graph of some algorithm. The number in
each of the nodes denotes the execution time per task step.

8
4/ \‘z.
N\ < N\
2 2 2 2
VARV, VAR, VARV, VARV,

1 1 1 1 1 1 1 1
&J X/\Z N/

2
\ /

., / T <Ty/p+Tx

T =29 T, = 56 Ty <56/4 429 =43 Ty <7

Quiz: Scheduling

The following figure shows a task-graph of some algorithm. The number in
each of the nodes denotes the execution time per task step.

8
4/ \‘4
N\ < N\
2 2 2 2
VAV VAN VAN v\

1 1 1 1 1 1 1 1
A4 \ VY Va4 A4

2 2 2 2
\4/ \4/
\8/

T =29 T, = 56 Ty, <56/4429 =43 Ty < 56/8+29 =36

29

7. Old Exam Questions

Old Exam Questions

= o-— - &)
él’_' f AMe-1) !
) Iy *\
. \" L X, N
Question sebeent 5022
The analysis of a program has shown a speed-up of,2 when running on 9
processor cores. What is the serial fraction according to Gustafson’s law?
]
P SP =2
P=1
A= ¥

31

Old Exam Questions

Question
The analysis of a program has shown a speed-up of 2 when running on 9
processor cores. What is the serial fraction according to Gustafson’s law?

Answer

Using Gustafson’s law formula S, = p — X - (p — 1), we substitute the given
values S, =2and p=9toget2=9— \-8 Rearranging gives 7= X - 8.
Solving for A (the serial fraction), we find A = £ = 0.875.

31

Old Exam Questions

Question

You make a measurement of your program using a very large number of
processor cores.,The measurements suggest that the speed-up (using
arbitrarily many processor cores) is bounded from above by S, = 2.5. What
is the best possible upper bound on the speed-up using 6 cores, assuming
that Amdahl's law holds for your problem?

Amdahl’s Law

< 32

Old Exam Questions

Question

You make a measurement of your program using a very large number of
processor cores. The measurements suggest that the speed-up (using
arbitrarily many processor cores) is bounded from above by S, = 2.5. What
is the best possible upper bound on the speed-up using 6 cores, assuming
that Amdahl's law holds for your problem?

Answer
Using Amdahl's law formula S, < ;= and Soc = § = 3, we find A = 2.

Substituting A and p = 6 into Amdahl’s law gives S5 < vrios = 2.

0.6
it

8. Hints for current tasks

Huffman Coding

33

Huffman: Frequencies

Usestd::unordered_map(#include <unordered_map>)

std::unordered_map<char, int> frequencies;
/] ...

++frequencies(['a'];

++frequencies['x'];

++frequencies['a'];

// A map is a container of key-value pairs (std::pair).
// Output all entries:
for (auto x:observations){
std::cout << "observations of " << x.first << ":" << x.second << '\n';

3

34

Huffman: Min Heap

Usestd::priority_queue(#include <queue>)

struct MyClass {

int x;

MyClass(int X): x{X} {}
s

struct compare {
bool operator() (const MyClass& a, const MyClass& b) const {
return a.x < b.x;

}
};

std::priority_queue<MyClass, std::vector<MyClass>, compare> q;
q.push(MyClass(10));
< 35

Huffman: Shared Pointers [optional]

Shared Pointers std: :shared_ptr (#include <memory>)

struct SNode {

int value;

std: :shared_ptr<SNode> left;

std: :shared_ptr<SNode> right;

SNode(int v): value{v}, left{nullptr}, right{nullptr} {}

}’

// A graph in which node 7 is shared: // 0
SNode* root = new SNode(0); // / \
root->left = new SNode(1); /712
root->right = new SNode(2); // / \
root->right->left = new SNode(7); // \/
root->right->right = root->right->left; // 7

root->left = nullptr; // Node 1 can and should be deallocated (deleted) now
root->right->left = nullptr; // Node 7 must not yet be deallocated
root->right->right = nullptr; // Node 7 can and should be deallocated now

Automated memory management, see Code Expert example %

Huffman: Tree Nodes

using SharedNode = std::shared_ptr<Node>;

struct Node {
char value;
int frequency;
SharedNode left;
SharedNode right;

// constructor for leafs
Node(char v, int f):

value{v}, frequency{f}, left{nullptr}, right{nullptr}
{

// constructor for inner nodes
Node (SharedNode 1, SharedNode r):

value{0}, frequency{l->frequency + r->frequency}, left{l}, right{r}
{3+

< 37

9. Outro

General Questions?

See you next time!

Po o\ CSE shadent:
Sign ug for e vass et
fwlko.ch [nl

Have a nice week!

