
Datastructures and Algorithms
Greedy Algorithms, Huffman Coding (Trees), Parallel Programming

Adel Gavranović — ETH Zürich — 2025

Overview

Learning Objectives
Huffman Coding
Greedy Choice
In-Class-Exercise (practical)
Parallel Programming
Old Exam Questions
Hints for current tasks

n.ethz.ch/~agavranovic

 Material

 Webpage

 Mail

1

https://n.ethz.ch/~agavranovic/download/Courses/25-FS-Datastructures-and-Algorithms/
https://n.ethz.ch/~agavranovic
mailto:adel.gavranovic@inf.ethz.ch

1. Learning Objectives

2

Objectives

□ Be able to build a Huffman Coding Tree using the algorithm outlined in
the session

□ Be able to reason about simple multithreaded programs
□ Understand the different aproaches to modelling performance of

parallel programs (Amdahl, Gustafson)

3

2. Summary

4

Getting on the same page

What did you see in the lectures up to now?

5

3. Huffman Coding

6

Huffman’s Idea From the
Lecture

Tree construction bottom up
Start with the set C of code
words
Replace iteratively the two
nodes with frequency
by a . Replace
iteratively the two nodes
with smallest frequency by
a new parent node. a:45 b:13 c:12 d:16 e:9 f:5

1425
30

55

100

7

Algorithm Huffman(C) From the
Lecture

Input: code words c ∈ C
Output: Root of an optimal code tree

n← |C|
Q← C
for i = 1 to n− 1 do

allocate a new node z
z.left← ExtractMin(Q) // extract word with minimal frequency.
z.right← ExtractMin(Q)
z.freq← z.left.freq + z.right.freq
Insert(Q, z)

return ExtractMin(Q)

8

4. Greedy Choice

9

Recap: Greedy Choice

Question:
What properties must an optimization problem with a recursive solution
have in order to be solvable with a greedy algorithm?
Also, give an example and a counterexample.

10

Recap: Greedy Choice

A problem with a recursive solution can be solved with a greedy algorithm
if it has the following properties:

The problem has optimal substructure: the solution of a problem can be
constructed with a combination of solutions of sub-problems.
The problem has the greedy choice property: The solution to a problem
can be constructed, by using a local property that does not depend on
the solution of the sub-problems.

Examples: Fractional knapsack problem, Huffman coding
Counterexamples: Knapsack problem, optimal binary search tree.

11

5. In-Class-Exercise (practical)

Complement the DP implementation to compute an
optimal search tree. −→ CodeExpert

12

6. Parallel Programming

13

Parallel Programming

Parallel Programming = perform multiple computations in parallel

Some terminology
Tasks
are computations that need to be done. Independent computations can
be done in parallel.
Threads
are parallel executions, that execute tasks.
Shared resources
anything that is needed to perform tasks, but must be shared because
there isn’t a resource per task. (Not the focus for this week)

14

Forking Threads

Forking a thread means starting a new, concurrent
computation

Main thread forks a new thread
Forking is done by creating a new thread
object std::thread(func, args...)
Main thread is the parent of its child thread
Each thread can fork further threads

tim
e

15

Thread Lifecycle (simplified)

sleeping running stoppedconstruct terminate deconstruct

schedule

pause

The operating system’s scheduler decides
which thread can execute next (schedule)
on which core to execute
when to pause/sleep again

Switching threads on the processor, which puts the current thread to sleep
and wakes up another one, is called context switching.

16

Join and Detach

other_thread.join() means waiting until
other_thread has finished execution.

The joining thread will sleep until
other_thread terminated (if it already did, no
sleeping is necessary)

other_thread.detach() indicates that no thread
will wait for other_thread to finish execution

Useful for nonterminating processes (e.g.
servers), and reactive systems (e.g. GUIs)
Terminates alongside the main thread at the
latest (int main())

sleep

join

detach

tim
e

17

C++ Threads From the
Lecture

void hello(unsigned id) {
std::cout << "hello from " << id << "\n";

}

int main() {
std::vector<std::thread> tv(3);
unsigned id = 0;
for (auto& t : tv)

t = std::thread(hello, ++id);
std::cout << "hello from main\n";
for (auto& t : tv)

t.join();
}

fork

join

18

Nondeterministic Execution! From the
Lecture

One execution:
hello from main
hello from 1
hello from 2
hello from 3

Other execution:
hello from 2
hello from main
hello from 1
hello from 3

Other execution:
hello from main
hello from 1
hello from hello from 2
3

19

Technical Details I

Forking a function that takes a reference requires std::ref upon thread
construction

void calc(std::vector<int>& very_long_vector) {
// doing funky stuff with very_long_vector

}

// main
std::vector<int> v(1000000000);

std::thread t1(calc, std::ref(v)); // Compiler error w/o std::ref
std::thread t2([&v]{ calc(v)}; }); // Alternative

20

Technical Details II
Threads cannot be copied

// --- Error ---
std::thread t1(hello);
std::thread t2;
t2 = t1; // Compiler error
t1.join();

// --- OK ---
std::thread t1(hello);
std::thread t2;
t2 = std::move(t1); // OK
t2.join();

Also relevant if threads are to be stored in containers
21

Technical Details

Also see the corresponding “Exercise Class Example” on Code Expert with
further technical details

22

Quiz

void print(char c); // Output character c

void A(char value) {
if (value != 'D') {

std::thread t(A, value + 1);
print(value);
t.join();

}
}

int main() {
std::thread t(A,'A');
t.join();

}

possible output(s)?

ABC, ACB, BAC, BCA, CAB, CBA

23

Parallel Performance

Given
fixed amount of computing work W (number computing steps)
Sequential execution time T1

Parallel execution time on p CPUs Tp

runtime speedup efficiency
perfection (linear) Tp = T1/p Sp = p Ep = 1
loss (sublinear) Tp > T1/p Sp < p Ep < 1
sorcery (superlinear) Tp < T1/p Sp > p Ep > 1

24

Amdahl vs. Gustafson From the
Lecture

Amdahl Gustafson

p = 4 p = 4

25

Amdahl vs. Gustafson, or why do we care?

Amdahl Gustafson
pessimist optimist

strong scaling weak scaling

⇒ need to develop methods with smallest sequential protion possible.

26

Performance Model From the
Lecture

T1: work: time for executing total work on
one processor
Tp: Execution time on p processors
T∞: span: critical path, execution time on
∞ processors. Longest path from root to
sink.
T1/T∞: Parallelism: wider is better
Lower bounds:

Tp ≥ T1/p Work law
Tp ≥ T∞ Span law

Task graph:

27

Greedy Scheduler From the
Lecture

Greedy scheduler: at each time it schedules as many available tasks as
possible.

Theorem 1
On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in
time

Tp ≤ T1/p + T∞

28

Quiz: Scheduling
The following figure shows a task-graph of some algorithm. The number in
each of the nodes denotes the execution time per task step.

8

4 4

2 2 2 2

1 1 1 1 1 1 1 1

2 2 2 2

4 4

8

T∞ = ? T1 = ? T4 ≤ ? T8 ≤ ?
29

7. Old Exam Questions

30

Old Exam Questions

Question
The analysis of a program has shown a speed-up of 2 when running on 9
processor cores. What is the serial fraction according to Gustafson’s law?

Answer
Using Gustafson’s law formula Sp = p− λ · (p− 1), we substitute the given
values Sp = 2 and p = 9 to get 2 = 9− λ · 8. Rearranging gives 7 = λ · 8.
Solving for λ (the serial fraction), we find λ = 7

8 = 0.875.

31

Old Exam Questions

Question
You make a measurement of your program using a very large number of
processor cores. The measurements suggest that the speed-up (using
arbitrarily many processor cores) is bounded from above by S∞ = 2.5. What
is the best possible upper bound on the speed-up using 6 cores, assuming
that Amdahl’s law holds for your problem?

Answer
Using Amdahl’s law formula Sp ≤ 1

λ+ 1−λ
p

and S∞ = 1
λ

= 5
2 , we find λ = 2

5 .
Substituting λ and p = 6 into Amdahl’s law gives S6 ≤ 1

0.4
1 + 0.6

6
= 2.

32

8. Hints for current tasks
Huffman Coding

33

Huffman: Frequencies

Use std::unordered_map (#include <unordered_map>)
std::unordered_map<char, int> frequencies;
// ...
++frequencies['a'];
++frequencies['x'];
++frequencies['a'];

// A map is a container of key-value pairs (std::pair).
// Output all entries:
for (auto x:observations){

std::cout << "observations of " << x.first << ":" << x.second << '\n';
}

34

Huffman: Min Heap
Use std::priority_queue (#include <queue>)
struct MyClass {

int x;
MyClass(int X): x{X} {}

};

struct compare {
bool operator() (const MyClass& a, const MyClass& b) const {

return a.x < b.x;
}

};

std::priority_queue<MyClass, std::vector<MyClass>, compare> q;
q.push(MyClass(10));

35

Huffman: Shared Pointers [optional]
Shared Pointers std::shared_ptr (#include <memory>)
struct SNode {

int value;
std::shared_ptr<SNode> left;
std::shared_ptr<SNode> right;
SNode(int v): value{v}, left{nullptr}, right{nullptr} {}

};

// A graph in which node 7 is shared: // 0
SNode* root = new SNode(0); // / \
root->left = new SNode(1); // 1 2
root->right = new SNode(2); // / \
root->right->left = new SNode(7); // \ /
root->right->right = root->right->left; // 7

root->left = nullptr; // Node 1 can and should be deallocated (deleted) now
root->right->left = nullptr; // Node 7 must not yet be deallocated
root->right->right = nullptr; // Node 7 can and should be deallocated now

Automated memory management, see Code Expert example 36

Huffman: Tree Nodes

using SharedNode = std::shared_ptr<Node>;

struct Node {
char value;
int frequency;
SharedNode left;
SharedNode right;

// constructor for leafs
Node(char v, int f):

value{v}, frequency{f}, left{nullptr}, right{nullptr}
{}

// constructor for inner nodes
Node(SharedNode l, SharedNode r):

value{0}, frequency{l->frequency + r->frequency}, left{l}, right{r}
{}

};

37

9. Outro

38

General Questions?

39

See you next time!

Have a nice week!

40

	Learning Objectives
	Summary
	Huffman Coding
	Greedy Choice
	In-Class-Exercise (practical)
	Parallel Programming
	Old Exam Questions
	Hints for current tasks
	Outro

