
Datastructures and Algorithms
Concurrent Programming, Exam Information

Adel Gavranovi! — ETH Zürich — 2025



Overview

Learning Objectives
Concurrent Programming
In-Class Code-Example
Information about Exam n.ethz.ch/~agavranovic

! Material

! Webpage

! Mail

→ 1



1. Follow-up

→ 2



Follow-up from last session
Loose Threads (.join(), .detach())

Always .join() your threads (unless you really know what you’re
doing!)
If you don’t, the main thread will end, and any other thread might still
be running and will get killed by the machine (somewhen, somehow)
If you want your non-main threads to keep running, simply .detach()
them from within the main thread

Assigning Threads
The t = std::thread(hello, ++id) line from slide 18 is in fact
correct
The way it works is that it actually implements a “move” (i.e. technically
not a copy or a pure assignment)
Move semantics are not relevant for the exam, so no worries!

→ 3



Follow-up from last session
Loose Threads (.join(), .detach())

Always .join() your threads (unless you really know what you’re
doing!)

If you don’t, the main thread will end, and any other thread might still
be running and will get killed by the machine (somewhen, somehow)
If you want your non-main threads to keep running, simply .detach()
them from within the main thread

Assigning Threads
The t = std::thread(hello, ++id) line from slide 18 is in fact
correct
The way it works is that it actually implements a “move” (i.e. technically
not a copy or a pure assignment)
Move semantics are not relevant for the exam, so no worries!

→ 3



Follow-up from last session
Loose Threads (.join(), .detach())

Always .join() your threads (unless you really know what you’re
doing!)
If you don’t, the main thread will end, and any other thread might still
be running and will get killed by the machine (somewhen, somehow)

If you want your non-main threads to keep running, simply .detach()
them from within the main thread

Assigning Threads
The t = std::thread(hello, ++id) line from slide 18 is in fact
correct
The way it works is that it actually implements a “move” (i.e. technically
not a copy or a pure assignment)
Move semantics are not relevant for the exam, so no worries!

→ 3



Follow-up from last session
Loose Threads (.join(), .detach())

Always .join() your threads (unless you really know what you’re
doing!)
If you don’t, the main thread will end, and any other thread might still
be running and will get killed by the machine (somewhen, somehow)
If you want your non-main threads to keep running, simply .detach()
them from within the main thread

Assigning Threads
The t = std::thread(hello, ++id) line from slide 18 is in fact
correct
The way it works is that it actually implements a “move” (i.e. technically
not a copy or a pure assignment)
Move semantics are not relevant for the exam, so no worries!

→ 3



Follow-up from last session
Loose Threads (.join(), .detach())

Always .join() your threads (unless you really know what you’re
doing!)
If you don’t, the main thread will end, and any other thread might still
be running and will get killed by the machine (somewhen, somehow)
If you want your non-main threads to keep running, simply .detach()
them from within the main thread

Assigning Threads

The t = std::thread(hello, ++id) line from slide 18 is in fact
correct
The way it works is that it actually implements a “move” (i.e. technically
not a copy or a pure assignment)
Move semantics are not relevant for the exam, so no worries!

→ 3



Follow-up from last session
Loose Threads (.join(), .detach())

Always .join() your threads (unless you really know what you’re
doing!)
If you don’t, the main thread will end, and any other thread might still
be running and will get killed by the machine (somewhen, somehow)
If you want your non-main threads to keep running, simply .detach()
them from within the main thread

Assigning Threads
The t = std::thread(hello, ++id) line from slide 18 is in fact
correct

The way it works is that it actually implements a “move” (i.e. technically
not a copy or a pure assignment)
Move semantics are not relevant for the exam, so no worries!

→ 3



Follow-up from last session
Loose Threads (.join(), .detach())

Always .join() your threads (unless you really know what you’re
doing!)
If you don’t, the main thread will end, and any other thread might still
be running and will get killed by the machine (somewhen, somehow)
If you want your non-main threads to keep running, simply .detach()
them from within the main thread

Assigning Threads
The t = std::thread(hello, ++id) line from slide 18 is in fact
correct
The way it works is that it actually implements a “move” (i.e. technically
not a copy or a pure assignment)

Move semantics are not relevant for the exam, so no worries!

→ 3



Follow-up from last session
Loose Threads (.join(), .detach())

Always .join() your threads (unless you really know what you’re
doing!)
If you don’t, the main thread will end, and any other thread might still
be running and will get killed by the machine (somewhen, somehow)
If you want your non-main threads to keep running, simply .detach()
them from within the main thread

Assigning Threads
The t = std::thread(hello, ++id) line from slide 18 is in fact
correct
The way it works is that it actually implements a “move” (i.e. technically
not a copy or a pure assignment)
Move semantics are not relevant for the exam, so no worries!

→ 3



2. Feedback regarding code expert

→ 4



General things regarding code expert

Amazing Mazes II

The grading is non-deterministic (i.e. the same code might somehow
yield di"erent grading)
As long as you submit one that passes you’re very likely going to get
the points. If not, please reach out to me via e-mail and describe the
problem briefly

→ 5



General things regarding code expert

Amazing Mazes II
The grading is non-deterministic (i.e. the same code might somehow
yield di"erent grading)
As long as you submit one that passes you’re very likely going to get
the points. If not, please reach out to me via e-mail and describe the
problem briefly

→ 5



3. Learning Objectives

→ 6



Objectives

↭ Understand and explain common concurrency bug terminology
↭ Implement basic countermeasures for concurrency issues and avoid
deadlocks

↭ Identify deadlock-prone code
↭ Understand and use Condition Variables
↭ Know what to expect on the exam and how to prepare

→ 7



Objectives

↭ Understand and explain common concurrency bug terminology
↭ Implement basic countermeasures for concurrency issues and avoid
deadlocks

↭ Identify deadlock-prone code
↭ Understand and use Condition Variables
↭ Know what to expect on the exam and how to prepare

→ 7



4. Summary

→ 8



Getting on the same page

What did you cover in the lecture?

→ 9



Getting on the same page

What did you cover in the lecture?

→ 9



5. Concurrent Programming

→ 10



Terminology

Race Condition
Occurs, if the observable behavior of a program depends on the sequence
of events in the computer system that cannot be (directly) controlled (such
as thread scheduling).

Bad Interleavings
Particular interleaving that leads to undesired results.

Data Race
Concurrent R/W or W/W access to shared memory by multiple threads,
which is a bug.

→ 11



Terminology

Race Condition

Occurs, if the observable behavior of a program depends on the sequence
of events in the computer system that cannot be (directly) controlled (such
as thread scheduling).

Bad Interleavings
Particular interleaving that leads to undesired results.

Data Race
Concurrent R/W or W/W access to shared memory by multiple threads,
which is a bug.

→ 11



Terminology

Race Condition
Occurs, if the observable behavior of a program depends on the sequence
of events in the computer system that cannot be (directly) controlled (such
as thread scheduling).

Bad Interleavings
Particular interleaving that leads to undesired results.

Data Race
Concurrent R/W or W/W access to shared memory by multiple threads,
which is a bug.

→ 11



Terminology

Race Condition
Occurs, if the observable behavior of a program depends on the sequence
of events in the computer system that cannot be (directly) controlled (such
as thread scheduling).

Bad Interleavings

Particular interleaving that leads to undesired results.

Data Race
Concurrent R/W or W/W access to shared memory by multiple threads,
which is a bug.

→ 11



Terminology

Race Condition
Occurs, if the observable behavior of a program depends on the sequence
of events in the computer system that cannot be (directly) controlled (such
as thread scheduling).

Bad Interleavings
Particular interleaving that leads to undesired results.

Data Race
Concurrent R/W or W/W access to shared memory by multiple threads,
which is a bug.

→ 11



Terminology

Race Condition
Occurs, if the observable behavior of a program depends on the sequence
of events in the computer system that cannot be (directly) controlled (such
as thread scheduling).

Bad Interleavings
Particular interleaving that leads to undesired results.

Data Race

Concurrent R/W or W/W access to shared memory by multiple threads,
which is a bug.

→ 11



Terminology

Race Condition
Occurs, if the observable behavior of a program depends on the sequence
of events in the computer system that cannot be (directly) controlled (such
as thread scheduling).

Bad Interleavings
Particular interleaving that leads to undesired results.

Data Race
Concurrent R/W or W/W access to shared memory by multiple threads,
which is a bug.

→ 11



Counter Problem

std::vector<std::thread> tv(10);
int counter = 0;

for (auto& t : tv)
t = std::thread([&] {

for (int i = 0; i < 100000; ++i) { counter++; } // data race
});

for (auto& t : tv)
t.join();

std::cout << "counter = " << counter << '\n';

→ 12

=



Counter Solution 1
std::vector<std::thread> tv(10);
std::mutex lock;
int counter = 0;

for (auto& t : tv)
t = std::thread([&] {

for (int i = 0; i < 100000; ++i) {
mutex.lock(); counter++; mutex.unlock(); // synchronized

}
});

for (auto& t : tv)
t.join();

std::cout << "counter = " << counter << '\n';→ 13

*

un untex ;



Counter Solution 2
Note: Atomic datatypes will be introduced briefly in week 14.

std::vector<std::thread> tv(10);
std::atomic<int> counter = 0; // atomic integer

for (auto& t : tv)
t = std::thread([&] {

for (int i = 0; i < 100000; ++i) { counter++; } // atomic increment
});

for (auto& t : tv)
t.join();

std::cout << "counter = " << counter << '\n';

→ 14



Quiz: What’s wrong with this code?

void exchangeSecret(Person& a, Person& b) {
a.getMutex()->lock();
b.getMutex()->lock();

Secret s = a.getSecret();
b.setSecret(s);

a.getMutex()->unlock();
b.getMutex()->unlock()

}

→ 15

Pl
pu P

I
if



Deadlock

Thread 1:
exchangeSecret(p1, p2);

Thread 2:
exchangeSecret(p2, p1);

How to resolve?

→ 16

-

Pl 4 -

E
-> -

- pi=
- 12I t



Deadlock

Thread 1:
exchangeSecret(p1, p2);

Thread 2:
exchangeSecret(p2, p1);

How to resolve?

→ 16



Possible Solution
void exchangeSecret(Person& a, Person& b) {

// order
std::mutex* first; std::mutex* second;
if (a.name < b.name)

first = a.getMutex(); second = b.getMutex();
else

first = b.getMutex(); second = a.getMutex();

first->lock(); second->lock(); // lock

Secret s = a.getSecret();
b.setSecret(s);

first->unlock(); second->unlock(); // unlock
}

→ 17

1/ or use south actually unique



Deadlocks and Races

Not easy to spot
Hard to debug
Might happen only very rarely
Testing is usually not good enough
Reasoning about code is required

Lesson learned: Need to be very careful when programming with locks!

→ 18



Quiz
void print(char c); // output c
std::mutex m1, m2;
char value;

void B() {
m1.lock(); m2.lock();
print(value++);
m2.unlock(); m1.unlock();

}
void A() {

m2.lock(); m1.lock();
print(value++);
m1.unlock(); m2.unlock();

}

int main() {
value = 'A';
print(value++);
std::thread t1(A);
std::thread t2(B);
t1.join();
t2.join();

}

Possible output(s)?

ABC
A, and the program won’t
terminate!

→ 19



Quiz
void print(char c); // output c
std::mutex m1, m2;
char value;

void B() {
m1.lock(); m2.lock();
print(value++);
m2.unlock(); m1.unlock();

}
void A() {

m2.lock(); m1.lock();
print(value++);
m1.unlock(); m2.unlock();

}

int main() {
value = 'A';
print(value++);
std::thread t1(A);
std::thread t2(B);
t1.join();
t2.join();

}

Possible output(s)?

ABC

A, and the program won’t
terminate!

→ 19



Quiz
void print(char c); // output c
std::mutex m1, m2;
char value;

void B() {
m1.lock(); m2.lock();
print(value++);
m2.unlock(); m1.unlock();

}
void A() {

m2.lock(); m1.lock();
print(value++);
m1.unlock(); m2.unlock();

}

int main() {
value = 'A';
print(value++);
std::thread t1(A);
std::thread t2(B);
t1.join();
t2.join();

}

Possible output(s)?

ABC
A, and the program won’t
terminate!

→ 19



Condition Variables

Condition variables allow a thread to wait e#ciently on a specific condition.
Once the condition has changed (or could have been changed), the
changing thread notifies the waiting one(s).

→ 20



Condition Variables
class Buffer { // Recall Buffer class from the lecture
...
public:

void put(int x) {
guard g(m);
buf.push(x);
cond.notify_one();

}
int get() {

guard g(m);
cond.wait(g, [&]{return !buf.empty();});
int x = buf.front(); buf.pop();
return x;

}
};→ 21

fo



Condition Variables
class Buffer {
...
public:

void put(int x) {
guard g(m);
cond.notify_one();
buf.push(x);

}
int get() {

guard g(m);
cond.wait(g, [&]{return !buf.empty();});
int x = buf.front(); buf.pop();
return x;

}
};

Is this correct as well?

→ 22

-

E



Condition Variables
class Buffer {
...
public:

void put(int x) {
guard g(m);
cond.notify_one();
buf.push(x);

}
int get() {

guard g(m);
cond.wait(g, [&]{return !buf.empty();});
int x = buf.front(); buf.pop();
return x;

}
};

Is this correct as well?

→ 22

C
-

T

-

=



Answer

Here it is irrelevant where the signalling is executed.
The signalling e"ect takes place, when the thread leaves the critical
section, i.e. when the guard is dropped.

→ 23

-



6. In-Class Code-Example

The Bridge ↑↓ CodeExpert

→ 24

std::unique_lock<std::mutex>

I
name of guard

deli"global
alias for I sta:: mutex

this locks the

mutex as soon as

it can and will

release it as

soon as "ggg" is
out of scope (i.e.

destructed)



7. Information about Exam
Exam on 19.8.2025, 13:30h

→ 25



Relevant for the exam

Material for the exam comprises
Course content (lectures, lecture notes)
Exercises content (exercise sheets, recitation hours)

→ 26



Relevant for the exam
Written exam (150 min). Examination aids: four A4 pages. No constraints
regarding content and layout (text, images, single/double page, margins,
font size, etc.).
The exam will be hybrid (on paper and at the computer).

All you really need to write your own amazing cheatsheet!
→ 26



Old Exams (Exam Collection)
First solve, then check the solution!

https://lec.inf.ethz.ch/past_exams/

→ 27



Structure

Roughly like this

Question 1 2 3 4 5 6 7 Total
Points 25 16 14 17 16 16 16 120
Score

around 4 Theory tasks (around 52 points):

[1] short tasks
[2] asymptotics and recurrence equations
[3, 4] 2 bigger tasks

[5, 6, 7] 3 CodeExpert tasks (around 50 points)

→ 28

DP , PP, FlowGraphs ,

I Geometre algos



8. Outro

→ 29



General Questions?

→ 30



See you at the exam!

Good luck with your exams!

→ 31


