
Exercise Session 01 – Asymptotics
Data Structures and Algorithms
These slides are based on those of the lecture, but were adapted and
extended by the teaching assistant Adel Gavranović



Today’s Schedule

Intro
Learning Objectives
Exercise Process
Repetition Theory

Examples (Theory)
Asymptotic Running Time of
Program Fragments

Tips for code expert
Outro

n.ethz.ch/~agavranovic

Exercise Session Material

Adel’s Webpage

Mail to Adel

1

https://n.ethz.ch/~agavranovic/download/Datastructures-and-Algorithms-FS2024
https://n.ethz.ch/~agavranovic
mailto:adel.gavranovic@inf.ethz.ch


Comic of the Week

xkcd 2

https://xkcd.com/2343/


1. Intro

3



Intro

Who am I?
Who are you?

4



2. Learning Objectives

5



Learning Objectives

□ Get to know the weekly agenda for this course
□ Understand differences between Problem, Algorithm, and Program
□ Get to know big-O notation (and its friends Ω and Θ)
□ Learn some LATEX and Markdown

6



Exercises

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

issuance submission

preliminary discussion post discussion

V

Ü

V

Ü

V

Ü

V

Ü

V

Ü

V

Ü

S S S

Exercises availabe on Monday.
Preliminary discussion in the following recitation session
Solution of the exercise until the following Thursday.
Discussion of the exercise in the next recitation session.
Feedback roughly within 10 days after submission date.
Study Center on Thursday.

7



4. Repetition Theory

8



Warm-up

What is a problem?
What is an algorithm?

➜ well-defined computing procedure to compute output data from input data.

What is a program?

➜ Concrete implementation of an algorithm

9



Problems, Algorithms and Programs

Problem

Algorithm

solves a

Program

implements an

10



Warm-up

Problem

Algorithms

can be solved by multiple

Program

can be implemented in various ways

11



Efficiency

Program Computing time Measurable value on an actual machine.

Algorithm Cost Number of elementary operations

Problem Complexity Minimal (asymptotic) cost over all algorithms that
solve the problem.

➜ Estimation of cost or computing time depending on the input size, denoted by n.

12



Asymptotic behavior

What are Ω(g(n)), Θ(g(n)), O(g(n))?
➜ Sets of functions!

subset A ⊆ B
proper subset A ⊊ B
intersection A ∩ B

13



Asymptotic behavior
Given: function f : N → R.
Definition:

O(g) = {f : N → R|∃c > 0, n0 ∈ N|∀n ≥ n0 : 0 ≤ f(n) ≤ c · g(n)}
Ω(g) = {f : N → R|∃c > 0, n0 ∈ N|∀n ≥ n0 : 0 ≤ c · g(n) ≤ f(n)}
Θ(g) = O(g) ∩ Ω(g)

Intuition:
f ∈ O(g): f grows asymptotically not faster than g. Algorithm with running
time f is not worse than any other algorithm with g.
f ∈ Ω(g): f grows asymptotically not slower than g. Algorithm with running
time f is worse than any other algorithm with g.
f ∈ Θ(g): f grows asymptotically as fast as g. Algorithm with running time f
is as good as any other algorithm with g. 14



Used less often

Given: function f : N → R.
Definition:

O(g) = {f : N → R|∃c > 0, n0 ∈ N|∀n ≥ n0 : 0 ≤ f(n) ≤ c · g(n)}
o(g) = {f : N → R|∀c > 0 ∃n0 ∈ N|∀n ≥ n0 : 0 ≤ f(n) ≤ c · g(n)}

Ω(g) = {f : N → R|∃c > 0, n0 ∈ N|∀n ≥ n0 : 0 ≤ c · g(n) ≤ f(n)}
ω(g) = {f : N → R|∀c > 0 ∃n0 ∈ N|∀n ≥ n0 : 0 ≤ c · g(n) ≤ f(n)}

f ∈ o(g): f grows much slower than g

f ∈ ω(g): f grows much faster than g

15



Useful information for the exercise

Theorem 1

1. limn→∞
f(n)
g(n) = 0 ⇒ f ∈ O(g), O(f) ⊊ O(g).

2. limn→∞
f(n)
g(n) = C > 0 (C constant) ⇒ f ∈ Θ(g).

3. f(n)
g(n) →

n→∞
∞ ⇒ g ∈ O(f), O(g) ⊊ O(f).

Example 2

1. limn→∞
n
n2 = 0 ⇒ n ∈ O(n2), O(n) ⊊ O(n2).

2. limn→∞
2n
n

= 2 > 0 ⇒ 2n ∈ Θ(n).
3. n2

n
→

n→∞
∞ ⇒ n ∈ O(n2), O(n) ⊊ O(n2).

16



Property

f1 ∈ O(g), f2 ∈ O(g) ⇒ f1 + f2 ∈ O(g)

17



4.1 Examples (Theory)

18



Examples

O(g) = {f : N → R| ∃c > 0, ∃n0 ∈ N : ∀n ≥ n0 : 0 ≤ f(n) ≤ c · g(n)}

f(n) f ∈ O(?) Example
3n + 4 O(n) c = 4, n0 = 4
2n O(n) c = 2, n0 = 0
n2 + 100n O(n2) c = 2, n0 = 100
n +

√
n O(n) c = 2, n0 = 1

19



Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).
2n2 ∈ O(n) is wrong: 2n2

n
= 2n →

n→∞
∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n ̸∈ Ω(n2) ⊃ Θ(n2)

20



Quiz

1 ∈ O(15) ? ✓ better 1 ∈ O(1)

2n + 1 ∈ Θ(n) ? ✓
√

n ∈ O(n) ? ✓
√

n ∈ Ω(n) ? ✗

n ∈ Ω(
√

n) ? ✓
√

n /∈ Θ(n) ? ✓

O(
√

n) ⊂ O(n) ? ✓

2n /∈ O(exp(n)) ? ✗

21



A good strategy?

... Then I simply buy a new machine! If today I can solve a problem of size n,
then with a 10 or 100 times faster machine I can solve ... 1

Komplexität (speed ×10) (speed ×100)

log2 n n → n10 n → n100

n n → 10 · n n → 100 · n

n2 n → 3.16 · n n → 10 · n

2n n → n + 3.32 n → n + 6.64

1To see this, you set f(n′) = c · f(n) (c = 10 or c = 100) and solve for n′

22



4.2 Asymptotic Running Time of Program Fragments

23



Asymptotic Running Times with Θ

void run(int n){
for (int i = 1; i<n; ++i)
op();

}

How often is op() called as a function of n?

n−1∑
i=1

1 = n − 1 ∈ Θ(n)

24



Asymptotic Running Times with Θ

void run(int n){
for (int i = 1; i<n; ++i)

for (int j = 1; j<n; ++j)
op();

}

How often is op() called as a function of n?

n−1∑
i=1

n−1∑
j=1

1 =
n−1∑
i=1

(n − 1) = (n − 1) · (n − 1) ∈ Θ(n2)

25



Asymptotic Running Times with Θ

void run(int n){
for (int i = 1; i<n; ++i)

for (int j = i; j<n; ++j)
op();

}

How often is op() called as a function of n?

n−1∑
i=1

n−1∑
j=i

1 =
n−1∑
i=1

(n − i) =
n−1∑
i=1

i = n(n − 1)
2 ∈ Θ(n2)

26



Asymptotic Running Times with Θ

void run(int n){
for (int i = 1; i<n; ++i){

op();
for (int j = i; j<n; ++j)

op();
}

}

How often is op() called?

n−1∑
i=1

1 +
n−1∑
j=i

1
 =

n−1∑
i=1

(1 + (n − i)) = n − 1 + n(n − 1)
2 ∈ Θ(n2)

27



Asymptotic Running Times with Θ

void run(int n){
for (int i = 1; i<n; ++i){

op();
for (int j = 1; j<i*i; ++j)

op();
}

}

How often is op() called?

n−1∑
i=1

1 +
i2−1∑
j=1

1
 =

n−1∑
i=1

(
1 + i2 − 1

)
=

n−1∑
i=1

i2 ∈ Θ(n3)

28



Asymptotic Running Times with Θ

void run(int n){
for(int i = 1; i <= n; ++i)

for(int j = 1; j*j <= n; ++j)
for(int k = n; k >= 2; --k)

op();
}

How often is op() called as a function of n?

n∑
i=1

⌊
√

n⌋∑
j=1

n − 1 ∈ Θ
(

n∑
i=1

n3/2
)

= Θ(
√

n5)

29



Asymptotic Running Times with Θ

int f(int n){
i=1;
while (i <= n*n*n){

i = i*2;
op();

}
return i;

}

How often is op() called as a function of n?

|i ∈ N : 2i ≤ n3| ∈ Θ(log2 n3) = Θ(log n)

30



5. Appendix

Some formulas with derivation

31



Sums

n∑
i=0

i = n · (n + 1)
2

Why?
Intuition

1 + ... + 100 = (1 + 100) + (2 + 99) + (3 + 98) + ... + (50 + 51)

More formally?

32



Sums

n∑
i=0

(n − i) =
n∑

i=0
i

⇒ 2 ·
n∑

i=0
i =

n∑
i=0

i +
n∑

i=0
(n − i)

=
n∑

i=0
(i + (n − i)) =

n∑
i=0

n = (n + 1) · n

33



Sums

n∑
i=0

i2 = n(n + 1)(2n + 1)
6

This you do not need to know by heart. But you should know
that it is a polynomial of third degree.

34



Sums

How do you derive something like this? Interesting Trick: On the one hand

n∑
i=0

i3 −
n∑

i=1
(i − 1)3 =

n∑
i=0

i3 −
n−1∑
i=0

i3 = n3,

on the other hand
n∑

i=0
i3 −

n∑
i=1

(i − 1)3 =
n∑

i=1
i3 −

n∑
i=1

(i − 1)3

=
n∑

i=1
i3 − (i − 1)3 =

n∑
i=1

3 · i2 − 3 · i + 1

35



Exponents and Logarithms

loga y = x ⇔ ax = y (a > 0, y > 0)

ax · ay = ax+y loga(x · y) = loga x + loga y

ax

ay
= ax−y loga

x

y
= loga x − loga y

ax·y = (ax)y loga xy = y loga x

loga n! =
n∑

i=1
log i

logb x = logb a · loga x alogb x = xlogb a

To see the last line, replace x → aloga x

36



Comparisons

n2

2n
−→
n→∞

0

37



Comparisons

n10000

2n
−→
n→∞

0

38



Comparisons

d > 1, c > 0
nc

dn
−→
n→∞

0

because

nc

dn
= 2log2 nc

2log2 dn = 2c·log2 n−n log2 d

39



Comparisons

n

log n
−→
n→∞

∞

40



Comparisons

n log n√
n

−→
n→∞

∞

41



Comparisons

log2 n2
√

n
−→
n→∞

0

log2 n2 = 2 log2 n
√

n = n1/2 = 2log2 n1/2 =
(√

2
)log2 n

log n2
√

n
= 2 log2 n(√

2
)log2 n

which behaves because of log2 n → ∞ for n → ∞ like 2 n

(√
2)n

42



6. Tips for code expert

43



Tips for code expert Exercise 1
All Text Tasks

Please learn a little LATEX and Markdown. It will make your (and my) life a
lot easier
Useful Links and some tools I use

Just Enough LATEX to Survive - Videos

Just Enough LATEX to Survive - PDF

Detexify (OCR for LATEX)

Mathpix Snipping Tool (paid)

Online Markdown Tutorial

Another Online Markdown Tutorial

Markdown Renderers Overview

Overleaf Tutorial

Overleaf via ETH

Task "Some Proofs"
No need for a rigorous proof (this is not Disk Math)
It pays off to revisit some of the log-properties that we’ve covered today

44

https://youtube.com/playlist?list=PLQTQDG8nyMPjlHdquBvv6f745YSY2Jylb&si=gX285h0kdDdgX1kJ
https://drive.google.com/file/d/10AEB_h-XK21jHo5zD71VR21AvUchRBAC/view
http://detexify.kirelabs.org/classify.html
https://mathpix.com/snipping-tool
https://dillinger.io/
https://stackedit.io/app
https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://www.overleaf.com/edu/ethz#overview


Tips for code expert Exercise 2

Task "Prefix Sum in 2D"
Study the Prefix Sum in 1D well and go from there
Make sketches!

Task "Sliding Window"
Sketches!

Task "Proofs by Induction"
The binomial formula will be useful for the second one

Task "Karatsuba Ofman"
Just translate the math into code

45



7. Outro

46



General Questions?

47



See you next time

Have a nice week!

48


	Intro
	Learning Objectives
	Exercise Process
	Repetition Theory
	Examples (Theory)
	Asymptotic Running Time of Program Fragments

	Appendix
	Tips for codeexpertcolorcode expert 
	Outro

