
Exercise Session 02 – Containers, Templates
Data Structures and Algorithms
These slides are based on those of the lecture, but were adapted and
extended by the teaching assistant Adel Gavranović

Today’s Schedule

Intro
Follow-up
Feedback for code expert
Learning Objectives
C++ Container Library
Templates Recap
Repetition theory: Induction
Subarray Sum Problem
Code Example
Programming Exercise
Tips for code expert
Outro

n.ethz.ch/~agavranovic

Exercise Session Material

Adel’s Webpage

Mail to Adel

1

https://n.ethz.ch/~agavranovic/download/Datastructures-and-Algorithms-FS2024/
https://n.ethz.ch/~agavranovic
mailto:adel.gavranovic@inf.ethz.ch

Comic of the Week

xkcd 2

https://xkcd.com/2347/

1. Intro

3

Intro

Welcome Back!
There was a miscommunication regarding exercise sessions in first
week – Sorry for that!

4

2. Follow-up

5

Follow-up from last exercise session

There’s a code expert sandbox1 now! (To try out code outside of
exercises)
That one confusing Runtime-Slide

1Can be found under "code examples" at the top
6

Slide from last session "A good strategy?"

If today I can solve a problem of size n (in some fixed time), then with a 10
or 100 times faster machine I can solve . . . 2

Complexity of Algorithm (speed ×10) (speed ×100)

log2 n n→ n10 n→ n100

n n→ 10 · n n→ 100 · n

n2 n→ 3.16 · n n→ 10 · n

2n n→ n + 3.32 n→ n + 6.64

2To see this, you set f(n′) = c · f(n) (c = 10 or c = 100) and solve for n′

7

Main Takeaway

Faster computers won’t be able to compensate for inefficient
algorithms, since the increase in problem size that a significantly faster
computer allows is uselessly small

e.g. from n = 4 to n′ ≈ 7 (per unit of time) in case of an algorithm of
complexity O(2n) if the new computer runs 10-times faster than the old

Seriously, just write efficient code

8

3. Feedback for code expert

9

General things regarding code expert

Nothing yet since the deadline for the current is tonight 23:59

10

Questions regarding code expert from your side?

11

4. Learning Objectives

12

Learning Objectives

□ Understand what Container are
□ Understand what benefits Containers bring
□ Understand what Templates are
□ Understand what benefits Templates bring
□ Understand how to do Induction Proofs in this course
□ Be prepared to solve the next code expert exercises

13

5. C++ Container Library

14

What are containers abstractly?

Essentially, a container is some sort of organized collection of things
Each Container has its benefits and drawbacks
Each Container has its use cases
Don’t bother learning them by heart,. . .

. . . since you will be familiar with many of them by the end of this course
because you will study some of them very closely

Each Container comes with its own cool helper-functions!

e.g. .push_back() for our beloved std::vector

15

C++ Containers

duplicates?

ordered?

multimap

ye
s

unordered_multimap

no

yes

ordered?

map
ye

s

unordered_map

no

no

key-value

pairs

duplicates?

ordered?

multiset

so
rte

d

vector, array, deque,
list, forward_list

insertion
order unordered_multiset

no

yes

ordered?

set

ye
s

unordered_set

no

no

Values

16

https://en.cppreference.com/w/cpp/container/multimap
https://en.cppreference.com/w/cpp/container/unordered_multimap
https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/unordered_map
https://en.cppreference.com/w/cpp/container/multiset
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/array
https://en.cppreference.com/w/cpp/container/deque
https://en.cppreference.com/w/cpp/container/list
https://en.cppreference.com/w/cpp/container/forward_list
https://en.cppreference.com/w/cpp/container/unordered_multiset
https://en.cppreference.com/w/cpp/container/set
https://en.cppreference.com/w/cpp/container/unordered_set

Sequence-Container

vector array deque list forward_list
contiguous
dynamic
memory

contiguous
static memory

Non-contig.
dynamic
memory

Non-contig.
dynamic
memory

Non-contig.
dynamic
memory

random
access

random
access

random
access

fast push/pop
back

fast push/pop
front/back

fast push/pop
front/back

fast push/pop
front

bidirectional
iteration

bidirectional
iteration

bidirectional
iteration

bidirectional
iteration

forward
iteration

dynamic: size can change during runtime, static: size fixed at compile-time,
random acccess: direct, immediate access to any element by its index (e.g.
vec[42]), bidirectional: backward and forwards iterable

17

https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/array
https://en.cppreference.com/w/cpp/container/deque
https://en.cppreference.com/w/cpp/container/list
https://en.cppreference.com/w/cpp/container/forward_list

Sets and Multisets

std::set<E> contains unique elements
std::multiset<E> allows duplicate elements

Iteration yields all elements in decreasing order (in non-deterministic order
if unordered_multiset)
std::multiset<E>::count(elem) returns the number of occurences of a
given element

Example of std::multiset

Content: Xanten Xenon Xenon Xenon Xerografie Xerophil Xylose
count("Xenon") = 3
count("Xylose") = 1

18

Maps and Multimaps
std::map<K,V> contains pairs (key, value), where a key maps to at most
one value
std::multimap<K,V> allows duplicate pairs

Iteration yields all pairs in descending key order (in non-deterministic order,
if unordered_multimap)
std::multimap<K,V>::count(key) returns the number of occurrences of a
given key
std::multimap<K,V>::equal_range(key) returns all values (in non-det.
order) for a given key

Example of std::multimap<K,V>

Content: {2, er} {2, du} {2, es} {3, Axt} {3, sie} {4, Igel}
count(2) = 3
Values for key 2: er du es 19

6. Templates Recap

20

Motivation

Goal: generic binary tree without duplicating code

class Node { ... }; // Node of a binary search tree
auto n1 = Node<int>(5);
auto n2 = Node<std::string>("Zürich");
n1.insert(1);
n2.contains(2); // Compiler error

Idea:
Make classes and functions parametric in types (= template parameters) ...
... just as they are already parametric in values (= function parameters)

21

Types as Template Parameters

1. In the concrete implementation of a class replace the type that
should become generic (e.g. int) by a representative element, e.g. T.

2. Put in front of the class the construct template<typename T>
Replace T by the representative name).

The construct template<typename T> can be understood as “for all types
T”.

22

Class template
template <typename K>
class Node {

K key;
Node* left, right;

public:
Node(K k, Node* l, Node* r): key(k), left(l), right(r) {}

bool contains(K search_key) const {
return search_key == key

|| left != nullptr && left->contains(search_key)
|| right != nullptr && right->contains(search_key)

}
...

};
23

Function Template: Analogous Approach

1. To make a concrete implementation generic, replace the specific
type (e.g. int) with a name, e.g. T,

2. Put in front of the function the construct template<typename T>
(Replace T by the chosen name)

24

Examples

For free functions
template <typename T>
void swap(T& x, T& y) {

T temp = x;
x = y;
y = temp;

}

template <typename Iter>
void is_sorted(Iter begin, Iter end){

...
}

For operators
template <typename T>
ostream& operator<<(ostream& out, const Node<T> root) {

...
}

25

Semantics (Code-Generation)
For each template instance, the compiler creates a corresponding
instantiated class (or function)→ static code generation

Node<int> n1 = ...;
Node<std::string> n2 = ...;
Node<Student> n3 = ...;

class Node_int {
int key;
...
bool contains(int k) {...}
int max() {...}

};

class Node_string {
std::string key;
...

};

class Node_Student {
Student key;
...

};

n1 n2 n3

26

Semantics (Code-Generation)

For each template instance, the compiler creates a corresponding
instantiated class (or function)→ static code generation

Question: what does this imply for seperate compilation?

Should templates go into .h (declarations) or .cpp (definitions) files?
Is it possible to ship the compiled implementation (binary file
compiled from .cpp) alongside the header file?

27

Generalizing Code using Templates

class Vector {
public:

Vector() {...}
float& operator [](int i) { return data[i]; }

private:
float data[3];

};

float scalar_product(Vector a, Vector b) {
float result = 0;
for (int i=0; i<3; ++i)

result += a[i] * b[i];
return result;

}

28

Generalizing Code using Templates
template <typename T>
class Vector {
public:

Vector() {...}
T& operator [](int i) { return data[i]; }

private:
T data[3];

};

template <typename T>
T scalar_product(Vector<T> a, Vector<T> b) {

T result = 0;
for (int i=0; i<3; ++i)

result += a[i] * b[i];
return result;

}
29

Generalizing Code using Templates
template <unsigned N, typename T>
class Vector {
public:

Vector() {...}
T& operator [](int i) { return data[i]; }

private:
T data[N];

};

template <unsigned N, typename T>
T scalar_product(Vector<N, T> a, Vector<N, T> b) {

T result = 0;
for (int i=0; i<N; ++i)

result += a[i] * b[i];
return result;

}
30

Type testing
Templates: syntactic checks
Instances: checks as usual

template <typename T>
T abs(T v) {

return 0 <= v ? v : -v;
}
// main
abs(8); // OK

template <typename T>
T abs(T v) {

return 0 <= v ? v : -v; // Error
}
// main
abs("hi"); // Error

template <typename T>
void swap(T& x, T& y) {

...
}
// main
double a = 1.0;
double b = 7;
swap(a, b); // OK

template <typename T>
void swap(T& x, T& y) {

...
}
// main
double a = 1.0;
string b = "seven";
swap(a, b); // Error

31

Other Languages
All languages try to foster code reuse but chose different solutions.

C++, Rust:
static code generation
no runtime overhead
difficult to integrate into OOP

C#, Scala (, Java)
type parameters are turned into runtime values
well-suited for OOP
minor runtime overhead

Python, JavaScript:
dynamic typing (duck typing)
no syntactic overhead
potentially significant runtime overhead 32

6.1 auto vs templates

33

auto
Placeholder type specifier

Must be uniquely determined by direct context: initialiser code, or returns
User could write type themself, but leave it to the compiler

std::vector<int> vec = ...;
auto it = vec.cbegin();
// placeholder for td::vector<int>::const_iterator
Failing examples:
auto x; // x has no initializer
x = 0.0;
auto first_or_else(std::vector<int> data, unsigned int or_else) {

if (data.size() == 0) return or_else;
else return data[0];

}
34

Templates
Parameters are unknown until instantiated
template <typename N>
char sign(N v) {

if (0 <= v) return '+';
else return '-';

}

template <typename T1, typename T2>
struct Pair {

T1 fst;
T2 snd;

};
Instantiation may happen anywhere
Pair<int, double> p1 = Pair{1, 0.1};
auto p2 = Pair<std::string, bool>{"Brazil", true}; 35

Combining templates and auto

auto inside template must be determined after instantiation
template <typename C>
void print(C container) {

for (auto& e : container)
std::cout << e << ' ';

}

std::vector<int> numbers = {1, 2, 3};
print(numbers); // now auto can be determined

std::vector<std::string> airports = {"LAX", "LDN", "ZHR"};
print(airports); // now auto can be determined

36

Combining templates and auto

auto inside template must be determined after instantiation
template <typename C>
void print(C container) {

for (auto& e : container)
std::cout << e << ' ';

}

Question: Is it possible to not use auto here?
Answer: Yes, for example by replacing auto with an additional template
parameter E

37

From auto to templates

Before C++20 auto function parameters are forbidden
void print(auto x) {...} // Compiler error
Question: Why do you think that is?
Answer: Cannot determine type from context
Since C++20 auto function parameters are allowed
void print(auto x) {...} // ok
Clearly, it is still not possible to determine what auto stands for.
Question: What could be the meaning of auto in this case?
Answer: It is a shorthand for a template parameter!
template <typename T>
void Print(T x){ ... }

38

7. Repetition theory: Induction

39

Induction: what is required?

Prove statements, for example ∑n
i=1 i = n(n+1)

2 .

Base clause:

The given (in)equality holds for one or more base cases.
e.g.

∑1
i=1 i = 1 = 1(1+1)

2 .

Induction hypothesis: we assume that the statement holds for some n

Induction step (n→ n + 1):

From the validity of the statement for n (induction hypothesis) it follows the
one for n + 1.
e.g.:

∑n+1
i=1 i = n + 1 +

∑n
i=1 i = n + 1 + n(n+1)

2 = (n+2)(n+1)
2 .

40

8. Subarray Sum Problem

Naïve Solution, prefix sums, binary search, Sliding Window

41

Street section of a given length

Given: distances between all crossroads on a street

66 m 50 m 64 m 36 m 86 m

Wanted: street section of length 150 meters between crossroads

42

Subarray Sum Problem

Given: a sequence a[0], . . . , a[n− 1] of non-negative integers
Wanted: a subsequence with sum k:
pair (l, r) with 0 ≤ l ≤ r ≤ n− 1 such that ∑r

i=l a[i] = k

Example: n = 9, k = 7 Solution: l = 1, r = 3.

1
0

2
1

2
2

3
3

1
4

4
5

2
6

2
7

3
8

rl

2 2 3

43

Strategies?

Given: a sequence a[0], . . . , a[n− 1] of non-negative integers
Wanted: a subsequence with sum k:
pair (l, r) with 0 ≤ l ≤ r ≤ n− 1 such that ∑r

i=l a[i] = k

Strategies

Θ(n3) Three loops
Θ(n2) Prefix Sums
Θ(n log n) Binary Search
Θ(n) Sliding Window

44

Subarray Sum Problem: Sliding Window
Sliding Window Idea

start with left and right pointer at 0
repeat until the end of the sequence:

window too small (sum < k)⇒ increment right pointer
window too large (sum > k)⇒ increment left pointer
window as desired (sum = k)⇒ done!

Example: k = 7

2
0

3
1

1
2

2
3

2
4

3
5

4
6

6
7

7
8

6
9

window sum = 256868587l, r

2

l

2 3

r

1

rl r

2 3 1 2

rl

3 1 2

l r

3 1 2 2

l r

1 2 2

l r

1 2 2 3

l r

2 2 3

45

Subarray Sum Problem: Sliding Window Analysis
in each step: either l or r is increased
⇒ algorithm terminates after a maximum of 2n steps

target window: lexicographically smallest (left-most) window with sum k

if r reaches the end before l reaches the start
⇒ sum too large⇒ l is increased until it reaches the start of the window
if l reaches the start before r reaches the end
⇒ sum too small⇒ r is increased until it reaches the end of the window

2
0

3
1

1
2

2
3

2
4

3
5

4
6

6
7

7
8

6
9

2 2 3

l l rl r rl, rl
46

Analysis

We consider the lexicographically smallest (left-most) window with sum k,
called target window

In each step of the algorithm either l or r is increased. The algorithm
terminates after a maximum of 2n steps.
Assume r reaches the end of the target window before l reaches the start
of the target window, then l keeps increasing until it reaches the start of
the window.
Assume l reaches the start of the target window before r reaches the end
of the target window, then r keeps increasing until it reaches the end of
the window.

Exercise: window with sum closest to k

47

9. Code Example

48

10. Programming Exercise

Preparing remarks for the homework (Prefix Sum in 2D)

49

Sum in Subarray (naive algorithm)

Input: A sequence of n numbers (a0, a1, . . . , an−1) and a sub-interval
I = [x0, x1]

Output:
∑x1

i=x0
ai.

S ← 0
for i ∈ {x0, . . . , x1} do
S ← S + ai

return S

Idea of the exercise
Use the prefix sum to compute the sum of arbitrary sub-intervals with
constant running time
Generalize to two dimensions.

50

11. Tips for code expert

51

Tips for code expert Exercise 2
Task "Prefix Sum in 2D"

Study the Prefix Sum in 1D3 well and go from there
Make sketches!

Task "Sliding Window"
Sketches!

Task "Proofs by Induction"
The binomial formula will be useful for the second one
Please format it well or just scan a PDF and upload it

Task "Karatsuba Ofman"
Just translate the math into code

3There’s an inplementation in the code examples on code expert
52

12. Outro

53

General Questions?

54

See you next time

Have a nice week!

55

	Intro
	Follow-up
	Feedback for codeexpertcolorcode expert
	Learning Objectives
	C++ Container Library
	Templates Recap
	auto vs templates

	Repetition theory: Induction
	Subarray Sum Problem
	Code Example
	Programming Exercise
	Tips for codeexpertcolorcode expert
	Outro

