ETHzürich

Exercise Session 03 – Recurrence, Sorting **Data Structures and Algorithms** *These slides are based on those of the lecture, but were adapted and extended by the teaching assistant Adel Gavranović*

Today's Schedule

[Intro](#page-3-0) [Follow-up](#page-5-0) [Feedback for](#page-7-0) **code** expert [Learning Objectives](#page-11-0) [Landau Notation](#page-13-0) [Landau Notation Quiz](#page-19-0) [Analyse the running time of \(recur](#page-21-0)[sive\) Functions](#page-21-0) [Solving Simple Recurrence Equa](#page-31-0)[tions](#page-31-0) [Sorting Algorithms](#page-44-0) [In-Class Code-Examples](#page-48-0)

[Outro](#page-49-0)

n.ethz.ch/~agavranovic

[Adel's Webpage](https://n.ethz.ch/~agavranovic)

[Mail to Adel](mailto:adel.gavranovic@inf.ethz.ch)

Comic of the Week

BOOK PEOPLE HATE SEEING BOOKS SORTED BY COLOR, BUT IT TURNS OUT THEY GET WAY MORE ANGRY IF YOU SORT THE PAGES BY NUMBER.

1. [Intro](#page-3-0)

Intro

- **New room**
- Please tell the others!

Follow-up from last exercise session

None? Did I forget anything?

3. [Feedback for](#page-7-0) **code** expert

General things regarding **code** expert

- \blacksquare If you want feedback for Code, please make sure to mention it at the very top of the code with "FEEDBACK PLEASE" (or similar)
- \blacksquare I can't recommend this enough: Check out the master solution each week and double check your understanding
- If I ever seem needlessly strict (do tell me!), It's only because I really want you all to pass the exam (well)

Specific things regarding **code** expert

Big-O-Notation

You might've seen in the lectures: for Landau-notation it doesn't matter if you write \log_2 or any other base (\log_b) since they're asymptotically equivalent! (thus we usually just write log with no specified base)

Asymptotic Growth

- Overall pretty bad, so we're gonna have a closer look today
- Was the task description not clear enough?
- **I** Ideally, you'd have a ranking on your cheat sheet (or know it by heart) and then you just apply some logic and analysis to determine a ranking for some given asymptotic complexities

Questions regarding **code** expert from your side?

4. [Learning Objectives](#page-11-0)

Learning Objectives

- \square Be able to solve "rank-by-complexity" tasks
- □ Be able to set up *recurrence equations* from Code Snippets
- □ Be able to solve *recurrence equations* and solution's correctness

5. [Landau Notation](#page-13-0)

Landau Notation

Give a correct definition of the set $\Theta(f)$ as compact as possible analogously to the definitions for sets $\mathcal{O}(f)$ and $\Omega(f)$

$$
\Theta(f) = \{ g : \mathbb{N} \to \mathbb{R} \mid \exists a > 0, \ b > 0, \ n_0 \in \mathbb{N} : a \cdot f(n) \le g(n) \le b \cdot f(n) \ \forall n \ge n_0 \}
$$

=
$$
\{ g : \mathbb{N} \to \mathbb{R} \mid \exists c > 0, \ n_0 \in \mathbb{N} : \frac{1}{c} \cdot f(n) \le g(n) \le c \cdot f(n) \ \forall n \ge n_0 \}
$$

Landau Notation

Prove or disprove the following statements, where $f, q : \mathbb{N} \to \mathbb{R}^+$. (a) $f \in \mathcal{O}(q)$ if and only if $q \in \Omega(f)$. (e) $\log_a(n) \in \Theta(\log_b(n))$ for all constants $a, b \in \mathbb{N} \setminus \{1\}$ (g) If $f_1, f_2 \in \mathcal{O}(q)$ and $f(n) := f_1(n) \cdot f_2(n)$, then $f \in \mathcal{O}(q)$.

Landau Notation

Sorting functions: if function *f* is left to function *g*, then $f \in \mathcal{O}(q)$. Sort them

$$
n^5 + n
$$
, $\log(n^4)$, \sqrt{n} , $\binom{n}{3}$, 2^{16} , n^n , $n!$, $\frac{2^n}{n^2}$, $\log^8(n)$, $n \log n$

Sorted:

$$
2^{16}
$$
, $\log(n^4)$, $\log^8(n)$, \sqrt{n} , $n \log n$, $\binom{n}{3}$, $n^5 + n$, $\frac{2^n}{n^2}$, $n!$, n^n

What I had on my Cheatsheet

for $c \in \mathbb{R}^+$:

 $c, \log \log n, \log^c n, \sqrt{n}, n, n \log n, n^c, c^n, n!, n^n$ *n k* \int_{0}^{∞} = $\frac{n!}{k! \cdot (n-k)!} \in \Theta(n^k)$, $\log(n!) \in \Theta(n \log n)$, $n! \in \mathcal{O}(n^n)$

My personal approach to solving them

- 1. Have the "ranking" on my cheatsheet
- 2. Move all entries with exponents dependend on *n* to the right
- 3. Constants (no matter how large) all the way to the left
- 4. All "obviously log"-things rather to the left
- 5. Resolve/rewrite binomial stuff to polynomials
- 6. Do not forget that $\sqrt{n} = n^{\frac{1}{2}}$
- 7. All obvious polynomial-in-*n* things rather to the right
- 8. Where it's not obvious:
	- Switch on your brain and make comparisons
	- \blacksquare (Analysis I was actually useful!)

6. [Landau Notation Quiz](#page-19-0)

Landau Notation Quiz

Is $f \in \mathcal{O}(n^2)$, if $f(n) = \ldots$? \blacksquare *n* \checkmark n^2+1 \checkmark $\log^4(n^2)$ \checkmark $n \log(n^2)$ \checkmark *n*^π *X* (π ≈ 3.14 > 2) $n \cdot 2^{16}$ \checkmark $n^2 \cdot 2^{16}$ \checkmark 2^n $\boldsymbol{\mathsf{X}}$

Is $q \in \Omega(2n)$, if $q(n) = \ldots$? \blacksquare 1 \boldsymbol{X} \blacksquare *n* $\boldsymbol{\checkmark}$ *π* · *n* ✓ $\pi^{42} \cdot n \cdot \mathcal{V}$ $log(n)$ **X** $\frac{1}{\sqrt{n}}$ χ

7. [Analyse the running time of \(recursive\)](#page-21-0) [Functions](#page-21-0)

Analysis

```
How many calls to f()?
```

```
for(unsigned i = 1; i \leq n/3; i \neq 3){
  for(unsigned j = 1; j \leq i; ++j){
   f();
  }
}
```
The code fragment implies $\Theta(n^2)$ calls to \mathtt{f} (): the outer loop is executed $n/9$ times and the inner loop contains *i* calls to $f()$

```
for(unsigned i = 0; i < n; ++i){
 for(unsigned j = 100; j*j >= 1; --j){
   f();
 }
 for(unsigned k = 1; k \le n; k \ne 2){
   f():
 }
}
```
We can ignore the first inner loop because it contains only a constant number of calls to f()

The second inner loop contains $\lfloor \log_2(n) \rfloor + 1$ calls to \mathtt{f} (). Summing up v ields $\Theta(n \log(n))$ calls.

```
void g(unsigned n){
 if (n>0){
   g(n-1);f();
 }
}
```

$$
M(n) = M(n-1) + 1 = M(n-2) + 2 = \dots = M(0) + n = n \in \Theta(n)
$$

```
// pre: n is a power of 2
// n = 2^kvoid g(int n){
 if(n>0)g(n/2);
   f()}
}
```

$$
M(n) = 1 + M(n/2) = 1 + 1 + M(n/4) = k + M(n/2k) \in \Theta(\log n)
$$

```
// pre: n is a power of 2
void g(int n){
 if (n>0) {
   f();
   g(n/2);f();
   g(n/2);
 }
}
```

$$
M(n) = 2M\left(\frac{n}{2}\right) + 2 = 4M\left(\frac{n}{4}\right) + 4 + 2 = 8M\left(\frac{n}{8}\right) + 8 + 4
$$

$$
= n + n/2 + \dots + 2 \in \Theta(n)
$$

```
// pre: n is a power of 2
1/ n = 2^kvoid g(int n){
 if (n>0) {
   g(n/2);
   g(n/2);}
 for (int i = 0; i < n; ++i){
   f();
 }
}
```
 $M(n) = 2M(n/2) + n = 4M(n/4) + n + 2n/2 = ... = (k+1)n \in \Theta(n \log n)$

```
void g(unsigned n){
 for (unsigned i = 0; i \le n; ++i){
   g(i)
  }
 f();
}
T(0) = 1T(n) = 1 + \sum_{i=0}^{n-1} T(i)n | 0 1 2 3 4
                                        T(n) 1 2 4 8 16
```
Hypothesis: $T(n) = 2^n$.

Induction

Hypothesis: $T(n) = 2^n$. Induction step:

$$
T(n) = 1 + \sum_{i=0}^{n-1} 2^{i}
$$

= 1 + 2ⁿ - 1 = 2ⁿ

```
void g(unsigned n){
 for (unsigned i = 0; i \le n; ++i){
   g(i)
 }
 f();
}
```
You can also see it directly:

$$
T(n) = 1 + \sum_{i=0}^{n-1} T(i)
$$

\n
$$
\Rightarrow T(n-1) = 1 + \sum_{i=0}^{n-2} T(i)
$$

\n
$$
\Rightarrow T(n) = T(n-1) + T(n-1) = 2T(n-1)
$$

8. [Solving Simple Recurrence Equations](#page-31-0)

Recurrence Equation

$$
T(n) = \begin{cases} 2T(\frac{n}{2}) + \frac{n}{2} + 1, & n > 1 \\ 3 & n = 1 \end{cases}
$$

Specify a closed (non-recursive), simple formula for *T*(*n*) and prove it using mathematical induction. Assume that *n* is a power of 2.

Recurrence Equation

$$
T(2k) = 2T(2k-1) + 2k/2 + 1
$$

= 2(2(T(2^{k-2}) + 2^{k-1}/2 + 1) + 2^k/2 + 1 = ...
= 2^kT(2^{k-k}) + 2^k/2 + ... + 2^k/2 + 1 + 2 + ... + 2^{k-1}
= 3n + $\frac{n}{2}$ log₂ n + n - 1

 \Rightarrow Assumption $T(n) = 4n + \frac{n}{2}$ $\frac{n}{2} \log_2 n - 1$

Induction

1. Hypothesis $T(n) = f(n) := 4n + \frac{n}{2}$ $\frac{n}{2} \log_2 n - 1$ 2. Base Case $T(1) = 3 = f(1) = 4 - 1$. 3. Step $T(n) = f(n) \longrightarrow T(2 \cdot n) = f(2n)$ $(n = 2^k \text{ for some } k \in \mathbb{N})$:

$$
T(2n) = 2T(n) + n + 1
$$

\n
$$
\stackrel{i.h.}{=} 2(4n + \frac{n}{2}\log_2 n - 1) + n + 1
$$

\n
$$
= 8n + n\log_2 n - 2 + n + 1
$$

\n
$$
= 8n + n\log_2 n + n\log_2 2 - 1
$$

\n
$$
= 8n + n\log_2 2n - 1
$$

\n
$$
= f(2n).
$$

Master Method

$$
T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & n > 1 \\ f(1) & n = 1 \end{cases} \quad (a, b \in \mathbb{N}^+)
$$

1. *f*(*n*) = $\mathcal{O}(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0 \Longrightarrow T(n) \in \Theta(n^{\log_b a})$

2.
$$
f(n) = \Theta(n^{\log_b a}) \Longrightarrow T(n) \in \Theta(n^{\log_b a} \log n)
$$

3. $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(\frac{n}{b})$ $\frac{n}{b}$) $\leq cf(n)$ for some constant $c < 1$ and all sufficiently large $n \Longrightarrow T(n) \in \Theta(f(n))$

Examples

Maximum Subarray / Mergesort

$$
T(n) = 2T(n/2) + \Theta(n)
$$

 $a = 2, b = 2, f(n) = cn = cn^1 = cn^{\log_2 2} \Longrightarrow T(n) = \Theta(n \log n)$

Examples

Naive Matrix Multiplication Divide & Conquer¹

$$
T(n) = 8T(n/2) + \Theta(n^2)
$$

 $a = 8, b = 2, f(n) = cn^2 \in \mathcal{O}(n^{\log_2 8 - 1}) \xrightarrow{[1]} T(n) \in \Theta(n^3)$

¹Treated in the course later on

Strassens Matrix Multiplication Divide & Conquer²

$$
T(n) = 7T(n/2) + \Theta(n^2)
$$

$$
a = 7, b = 2, f(n) = cn^2 \in \mathcal{O}(n^{\log_2 7 - \epsilon}) \xrightarrow{[1]} T(n) \in \Theta(n^{\log_2 7}) \approx \Theta(n^{2.8})
$$

²Treated in the course later on

Examples

$$
T(n) = 2T(n/4) + \Theta(n)
$$

$$
a = 2, b = 4, f(n) = cn \in \Omega(n^{\log_4 2 + 0.5}), 2f(n/4) = c \frac{n}{2} \le \frac{c}{2} n^1 \stackrel{[3]}{\implies} T(n) \in \Theta(n)
$$

Examples

$$
T(n) = 2T(n/4) + \Theta(n^2)
$$

$$
a = 2, b = 4, f(n) = cn^2 \in \Omega(n^{\log_4 2 + 1.5}), 2f(n/4) = \frac{n^2}{8} \le \frac{1}{8}n^2 \stackrel{[3]}{\Longrightarrow}
$$

$$
T(n) \in \Theta(n^2)
$$

What I had on my Cheatsheet

Equation must be convertible into form

$$
T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad (a \ge 1, b > 1)
$$

where:

- *a* : Number of Subproblems
- 1*/b* : Division Quotient
- *f*(*n*) : Div- and Summing Costs Then we can proceed:
	- 1. Convert the Recurrence Equation into the form above
	- 2. Calculate $K := \log_b a$

3. Make case distinction (*ε >* 0):

$$
f \in \begin{cases} \mathcal{O}\left(n^{K-\varepsilon}\right) & \implies T(n) \in \Theta\left(n^K\right) \\ \Theta\left(n^K\right) & \implies T(n) \in \Theta\left(n^K \log(n)\right) \\ \Omega\left(n^{K+\varepsilon}\right) & \land af\left(\frac{n}{b}\right) \leq cf(n), \ 0 < c < 1 \\ \implies T(n) \in \Theta(f(n)) \end{cases}
$$

Personal Approach to "Solving RecEqs"

"Plug and Chuck"-Approach

- 1. Expand few times
- 2. Notice patterns (careful with multiplications on of $T(n)$)
- 3. Write down explicitly
- 4. Formulate explicit formula *f*(*n*)
- 5. Prove via induction (starting at *f*(1))

Personal Approach to "Calls of $f()$ "

- 1. Loops: just multiply
- 2. If too hard: usually $\Theta(2^n)$
- 3. Just brute-force calculate $g(0), g(1), g(2), g(3), \ldots$ and try to identify trends
- 4. If necessary, simply set up and solve RecEqs
- 5. If asked provide proof (by induction)

9. [Sorting Algorithms](#page-44-0)

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

Quiz

Execute two further iterations of the algorithm Quicksort on the following array. The first element of the (sub-)array serves as the pivot.

Stable and in-situ sorting algorithms

Stable sorting algorithms don't change the relative position of two equal $\mathcal{L}_{\mathcal{A}}$ elements.

 \blacksquare In-situ algorithms require only a constant amount of additional memory. Which of the sorting algorithms are stable? Which are in-situ? (How) can we make them stable / in-situ?

10. [In-Class Code-Examples](#page-48-0)

Implement (Binary) Search from Scratch

−→ **code** expert

Use the result to implement binary insertion sort.

−→ **code** expert

General Questions?

See you next time

Have a nice week!