
Exercise Session 03 – Recurrence, Sorting
Data Structures and Algorithms
These slides are based on those of the lecture, but were adapted and
extended by the teaching assistant Adel Gavranović



Today’s Schedule
Intro
Follow-up
Feedback for code expert
Learning Objectives
Landau Notation
Landau Notation Quiz
Analyse the running time of (recur-
sive) Functions
Solving Simple Recurrence Equa-
tions
Sorting Algorithms
In-Class Code-Examples
Outro

n.ethz.ch/~agavranovic

Exercise Session Material

Adel’s Webpage

Mail to Adel

1

https://n.ethz.ch/~agavranovic/download/Datastructures-and-Algorithms-FS2024/
https://n.ethz.ch/~agavranovic
mailto:adel.gavranovic@inf.ethz.ch


Comic of the Week

xkcd

2

https://xkcd.com/2791/


1. Intro

3



Intro

New room
Please tell the others!

4



2. Follow-up

5



Follow-up from last exercise session

None? Did I forget anything?

6



3. Feedback for code expert

7



General things regarding code expert

If you want feedback for Code, please make sure to mention it at the
very top of the code with "FEEDBACK PLEASE" (or similar)
I can’t recommend this enough: Check out the master solution each
week and double check your understanding
If I ever seem needlessly strict (do tell me!), It’s only because I really
want you all to pass the exam (well)

8



Specific things regarding code expert

Big-O-Notation
You might’ve seen in the lectures: for Landau-notation it doesn’t matter
if you write log2 or any other base (logb) since they’re asymptotically
equivalent! (thus we usually just write log with no specified base)

Asymptotic Growth
Overall pretty bad, so we’re gonna have a closer look today
Was the task description not clear enough?
Ideally, you’d have a ranking on your cheat sheet (or know it by heart)
and then you just apply some logic and analysis to determine a ranking
for some given asymptotic complexities

9



Questions regarding code expert from your side?

10



4. Learning Objectives

11



Learning Objectives

□ Be able to solve "rank-by-complexity" tasks
□ Be able to set up recurrence equations from Code Snippets
□ Be able to solve recurrence equations and solution’s correctness

12



5. Landau Notation

13



Landau Notation

Give a correct definition of the set Θ(f) as compact as possible analogously
to the definitions for sets O(f) and Ω(f)

Θ(f) = {g : N → R | ∃a > 0, b > 0, n0 ∈ N : a · f(n) ≤ g(n) ≤ b · f(n) ∀n ≥ n0}
= {g : N → R | ∃c > 0, n0 ∈ N : 1

c
· f(n) ≤ g(n) ≤ c · f(n) ∀n ≥ n0}

14



Landau Notation

Prove or disprove the following statements, where f, g : N → R
+.

(a) f ∈ O(g) if and only if g ∈ Ω(f).
(e) loga(n) ∈ Θ(logb(n)) for all constants a, b ∈ N \ {1}
(g) If f1, f2 ∈ O(g) and f(n) := f1(n) · f2(n), then f ∈ O(g).

15



Landau Notation

Sorting functions: if function f is left to function g, then f ∈ O(g). Sort them

n5 + n, log(n4),
√

n,

(
n

3

)
, 216, nn, n!, 2n

n2 , log8(n), n log n

Sorted:

216, log(n4), log8(n),
√

n, n log n,

(
n

3

)
, n5 + n,

2n

n2 , n!, nn

16



What I had on my Cheatsheet

for c ∈ R+ :
c, log log n, logc n,

√
n, n, n log n, nc, cn, n!, nn

(
n
k

)
= n!

k!·(n−k)! ∈ Θ(nk), log(n!) ∈ Θ(n log n), n! ∈ O(nn)

17



My personal approach to solving them

1. Have the "ranking" on my cheatsheet
2. Move all entries with exponents dependend on n to the right
3. Constants (no matter how large) all the way to the left
4. All "obviously log"-things rather to the left
5. Resolve/rewrite binomial stuff to polynomials
6. Do not forget that

√
n = n

1
2

7. All obvious polynomial-in-n things rather to the right
8. Where it’s not obvious:

Switch on your brain and make comparisons
(Analysis I was actually useful!)

18



6. Landau Notation Quiz

19



Landau Notation Quiz

Is f ∈ O(n2), if f(n) = . . . ?
n ✓

n2 + 1 ✓

log4(n2) ✓

n log(n2) ✓

nπ ✗ (π ≈ 3.14 > 2)
n · 216 ✓

n2 · 216 ✓

2n ✗

Is g ∈ Ω(2n), if g(n) = . . . ?
1 ✗

n ✓

π · n ✓

π42 · n ✓

log(n) ✗
√

n ✗

20



7. Analyse the running time of (recursive)
Functions

21



Analysis

How many calls to f()?

for(unsigned i = 1; i <= n/3; i += 3){
for(unsigned j = 1; j <= i; ++j){

f();
}

}

The code fragment implies Θ(n2) calls to f(): the outer loop is executed
n/9 times and the inner loop contains i calls to f()

22



How many calls to f()?

for(unsigned i = 0; i < n; ++i){
for(unsigned j = 100; j*j >= 1; --j){

f();
}
for(unsigned k = 1; k <= n; k *= 2){

f();
}

}

We can ignore the first inner loop because it contains only a constant
number of calls to f()
The second inner loop contains ⌊log2(n)⌋ + 1 calls to f(). Summing up

yields Θ(n log(n)) calls.

23



How many calls to f()?

void g(unsigned n){
if (n>0){

g(n-1);
f();

}
}

M(n) = M(n − 1) + 1 = M(n − 2) + 2 = ... = M(0) + n = n ∈ Θ(n)

24



How many calls to f()?

// pre: n is a power of 2
// n = 2^k
void g(int n){

if(n>0){
g(n/2);
f()

}
}

M(n) = 1 + M(n/2) = 1 + 1 + M(n/4) = k + M(n/2k) ∈ Θ(log n)

25



How many calls to f()?

// pre: n is a power of 2
void g(int n){

if (n>0){
f();
g(n/2);
f();
g(n/2);

}
}

M(n) = 2M
(

n

2

)
+ 2 = 4M

(
n

4

)
+ 4 + 2 = 8M

(
n

8

)
+ 8 + 4

= n + n/2 + ... + 2 ∈ Θ(n)
26



How many calls to f()?

// pre: n is a power of 2
// n = 2^k
void g(int n){

if (n>0){
g(n/2);
g(n/2);

}
for (int i = 0; i < n; ++i){

f();
}

}

M(n) = 2M(n/2) + n = 4M(n/4) + n + 2n/2 = ... = (k + 1)n ∈ Θ(n log n)
27



How many calls to f()?

void g(unsigned n){
for (unsigned i = 0; i<n ; ++i){

g(i)
}
f();

}

T (0) = 1
T (n) = 1 +∑n−1

i=0 T (i)
n 0 1 2 3 4

T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

28



Induction

Hypothesis: T (n) = 2n.
Induction step:

T (n) = 1 +
n−1∑
i=0

2i

= 1 + 2n − 1 = 2n

29



How many calls to f()?

void g(unsigned n){
for (unsigned i = 0; i<n ; ++i){

g(i)
}
f();

}

You can also see it directly:

T (n) = 1 +
n−1∑
i=0

T (i)

⇒ T (n − 1) = 1 +
n−2∑
i=0

T (i)

⇒ T (n) = T (n − 1) + T (n − 1) = 2T (n − 1)
30



8. Solving Simple Recurrence Equations

31



Recurrence Equation

T (n) =

2T (n
2 ) + n

2 + 1, n > 1
3 n = 1

Specify a closed (non-recursive), simple formula for T (n) and prove it using
mathematical induction. Assume that n is a power of 2.

32



Recurrence Equation

T (2k) = 2T (2k−1) + 2k/2 + 1
= 2(2(T (2k−2) + 2k−1/2 + 1) + 2k/2 + 1 = ...

= 2kT (2k−k) + 2k/2 + ... + 2k/2︸ ︷︷ ︸
k

+1 + 2 + ... + 2k−1

= 3n + n

2 log2 n + n − 1

⇒ Assumption T (n) = 4n + n
2 log2 n − 1

33



Induction

1. Hypothesis T (n) = f(n) := 4n + n
2 log2 n − 1

2. Base Case T (1) = 3 = f(1) = 4 − 1.

3. Step T (n) = f(n) −→ T (2 · n) = f(2n) (n = 2k for some k ∈ N):

T (2n) = 2T (n) + n + 1
i.h.= 2(4n + n

2 log2 n − 1) + n + 1

= 8n + n log2 n − 2 + n + 1
= 8n + n log2 n + n log2 2 − 1
= 8n + n log2 2n − 1
= f(2n).

34



Master Method

T (n) =

aT (n
b
) + f(n) n > 1

f(1) n = 1
(a, b ∈ N+)

1. f(n) = O(nlogb a−ϵ) for some constant ϵ > 0 =⇒ T (n) ∈ Θ(nlogb a)

2. f(n) = Θ(nlogb a) =⇒ T (n) ∈ Θ(nlogb a log n)

3. f(n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and if af(n
b ) ≤ cf(n) for some

constant c < 1 and all sufficiently large n =⇒ T (n) ∈ Θ(f(n))

35



Examples

Maximum Subarray / Mergesort

T (n) = 2T (n/2) + Θ(n)

a = 2, b = 2, f(n) = cn = cn1 = cnlog2 2 [2]=⇒ T (n) = Θ(n log n)

36



Examples

Naive Matrix Multiplication Divide & Conquer1

T (n) = 8T (n/2) + Θ(n2)

a = 8, b = 2, f(n) = cn2 ∈ O(nlog2 8−1) [1]=⇒ T (n) ∈ Θ(n3)

1Treated in the course later on
37



Examples

Strassens Matrix Multiplication Divide & Conquer2

T (n) = 7T (n/2) + Θ(n2)

a = 7, b = 2, f(n) = cn2 ∈ O(nlog2 7−ϵ) [1]=⇒ T (n) ∈ Θ(nlog2 7) ≈ Θ(n2.8)

2Treated in the course later on
38



Examples

T (n) = 2T (n/4) + Θ(n)

a = 2, b = 4, f(n) = cn ∈ Ω(nlog4 2+0.5), 2f(n/4) = cn
2 ≤ c

2n1 [3]=⇒ T (n) ∈ Θ(n)

39



Examples

T (n) = 2T (n/4) + Θ(n2)

a = 2, b = 4, f(n) = cn2 ∈ Ω(nlog4 2+1.5), 2f(n/4) = n2

8 ≤ 1
8n2 [3]=⇒

T (n) ∈ Θ(n2)

40



What I had on my Cheatsheet
Equation must be convertible into form

T (n) = a · T
(

n

b

)
+ f(n), (a ≥ 1, b > 1)

where:

a : Number of Subproblems
1/b : Division Quotient
f(n) : Div- and Summing Costs

Then we can proceed:
1. Convert the Recurrence

Equation into the form above
2. Calculate K := logb a

3. Make case distinction (ε > 0):

f ∈



O
(
nK−ε

)
=⇒ T (n) ∈ Θ

(
nK
)

Θ
(
nK
)

=⇒ T (n) ∈ Θ
(
nK log(n)

)
Ω
(
nK+ε

)
∧ af(n

b ) ≤ cf(n), 0 < c < 1
=⇒ T (n) ∈ Θ(f(n))

41



Personal Approach to "Solving RecEqs"

"Plug and Chuck"-Approach
1. Expand few times
2. Notice patterns (careful with multiplications on of T (n))
3. Write down explicitly
4. Formulate explicit formula f(n)
5. Prove via induction (starting at f(1))

42



Personal Approach to "Calls of f()"

1. Loops: just multiply
2. If too hard: usually Θ(2n)
3. Just brute-force calculate g(0), g(1), g(2), g(3), . . . and try to identify

trends
4. If necessary, simply set up and solve RecEqs
5. If asked provide proof (by induction)

43



9. Sorting Algorithms

44



Quiz
Consider the following three sequences of snap-shots (steps) of the algorithms (a)
Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide
the corresponding algorithm name.

5 4 1 3 2
1 4 5 3 2
1 2 5 3 4
1 2 3 5 4
1 2 3 4 5

selection

5 4 1 3 2
4 1 3 2 5
1 3 2 4 5
1 2 3 4 5

bubblesort

5 4 1 3 2
4 5 1 3 2
1 4 5 3 2
1 3 4 5 2
1 2 3 4 5

insertion

45



Quiz

Execute two further iterations of the algorithm Quicksort on the following array.
The first element of the (sub-)array serves as the pivot.

8 7 10 15 3 6 9 5 2 13
2 7 5 6 3 8 9 10 15 13
2 7 5 6 3 8 9 10 15 13
2 3 5 6 7 8 9 10 15 13

46



Stable and in-situ sorting algorithms

Stable sorting algorithms don’t change the relative position of two equal
elements.

5 2 6 6 8 4
not stable

2 4 5 6 6 8

5 2 6 6 8 4
stable

2 4 5 6 6 8

In-situ algorithms require only a constant amount of additional memory.
Which of the sorting algorithms are stable? Which are in-situ? (How) can we
make them stable / in-situ?

47



10. In-Class Code-Examples

Implement (Binary) Search from Scratch
−→ code expert
Use the result to implement binary insertion sort.
−→ code expert

48



11. Outro

49



General Questions?

50



See you next time

Have a nice week!

51


	Intro
	Follow-up
	Feedback for codeexpertcolorcode expert 
	Learning Objectives
	Landau Notation
	Landau Notation Quiz
	Analyse the running time of (recursive) Functions
	Solving Simple Recurrence Equations
	Sorting Algorithms
	In-Class Code-Examples
	Outro

