
Exercise Session 04 – Amortized Analysis
Data Structures and Algorithms
These slides are based on those of the lecture, but were adapted and
extended by the teaching assistant Adel Gavranović

Today’s Schedule

Intro
Follow-up
Feedback for code expert
Learning Objectives
Entry Quiz
Amortized Analysis
Code-Example: Dynamically Sized
Array
Tips for code expert
Old Exam Question
Outro

n.ethz.ch/~agavranovic

Exercise Session Material

Adel’s Webpage

Mail to Adel

1

Comic of the Week

xkcd

2

1. Intro

3

Intro

You get the XP points to unlock the bonus tasks with way fewer than all
points (i.e. 1/3 usually su�ces)

4

Intro

You get the XP points to unlock the bonus tasks with way fewer than all
points (i.e. 1/3 usually su�ces)

4

2. Follow-up

5

Follow-up from last exercise session

The code examples (we skipped last week) are good exam prep
If time allows, we’ll finish the rest of the previous session
If time allows, we’ll have a look at an exam question

6

Follow-up from last exercise session

The code examples (we skipped last week) are good exam prep

If time allows, we’ll finish the rest of the previous session
If time allows, we’ll have a look at an exam question

6

Follow-up from last exercise session

The code examples (we skipped last week) are good exam prep
If time allows, we’ll finish the rest of the previous session

If time allows, we’ll have a look at an exam question

6

Follow-up from last exercise session

The code examples (we skipped last week) are good exam prep
If time allows, we’ll finish the rest of the previous session
If time allows, we’ll have a look at an exam question

6

3. Feedback for code expert

7

Task "Some Proofs"

use counterexamples whenever you can – they’re easy to proof and
even easier to correct ;)
the majority seems to grap the concepts well, but the "mathy proofs"
are lacking – make sure to study the master solutions

8

Task "Some Proofs"

use counterexamples whenever you can – they’re easy to proof and
even easier to correct ;)

the majority seems to grap the concepts well, but the "mathy proofs"
are lacking – make sure to study the master solutions

8

Task "Some Proofs"

use counterexamples whenever you can – they’re easy to proof and
even easier to correct ;)
the majority seems to grap the concepts well, but the "mathy proofs"
are lacking – make sure to study the master solutions

8

Questions regarding code expert from your side?

9

4. Learning Objectives

10

Learning Objectives

⇤ Understand the basics of the three Amortized Analysis methods
⇤ Aggregate Analysis
⇤ Account Method
⇤ Potential Method

⇤ Be prepared for Double Ended Queue exercise on code expert

11

5. Entry Quiz

12

Quiz

Among a huge number (n) of students present, a price will be awarded to
the student with the median Legi number. There is an argument what kind of
algorithm shall be used to find this student. Mark the correct statements.

(1) In order to have a worst case runtime of O(n log n), we use
BubbleSort
Selection Sort
Mergesort
Quicksort

13

Quiz

Among a huge number (n) of students present, a price will be awarded to
the student with the median Legi number. There is an argument what kind of
algorithm shall be used to find this student. Mark the correct statements.

(1) In order to have a worst case runtime of O(n log n), we use
BubbleSort
Selection Sort
Mergesort
Quicksort

13

Quiz

Among a huge number (n) of students present, a price will be awarded to
the student with the median Legi number. There is an argument what kind
of algorithm shall be used to find this student. Mark the correct statements.

(2) We use Quickselect with random pivot choice. Then we have
a worst case running time of O(n log n)
a worst case running time of O(n)
an expected running time of O(log n)
an expected running time of O(n)

14

Quiz

Among a huge number (n) of students present, a price will be awarded to
the student with the median Legi number. There is an argument what kind
of algorithm shall be used to find this student. Mark the correct statements.

(2) We use Quickselect with random pivot choice. Then we have
a worst case running time of O(n log n)
a worst case running time of O(n)
an expected running time of O(log n)
an expected running time of O(n)

14

6. Amortized Analysis

15

Amortized Analysis

Three Methods

Aggregate analysis
Account Method
Potential Method

16

Amortized Analysis

Three Methods
Aggregate analysis
Account Method
Potential Method

16

Example: simple multi-set
Supports operations Insert and Find.

Idea:
Collection of arrays Ai with Length 2i

Every array is either entirely empty or entirely full and stores items in a
sorted order
Between the arrays there is no further relationship

Data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, 20, 24, 36, 48, 75]
We use 0-indexing, such that for the lengths |Ai| = 2i.

17

Example: simple multi-set
Supports operations Insert and Find.
Idea:
Collection of arrays Ai with Length 2i

Every array is either entirely empty or entirely full and stores items in a
sorted order
Between the arrays there is no further relationship

Data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, 20, 24, 36, 48, 75]
We use 0-indexing, such that for the lengths |Ai| = 2i.

17

Example: simple multi-set
Supports operations Insert and Find.
Idea:
Collection of arrays Ai with Length 2i

Every array is either entirely empty or entirely full and stores items in a
sorted order

Between the arrays there is no further relationship

Data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, 20, 24, 36, 48, 75]
We use 0-indexing, such that for the lengths |Ai| = 2i.

17

Example: simple multi-set
Supports operations Insert and Find.
Idea:
Collection of arrays Ai with Length 2i

Every array is either entirely empty or entirely full and stores items in a
sorted order
Between the arrays there is no further relationship

Data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, 20, 24, 36, 48, 75]
We use 0-indexing, such that for the lengths |Ai| = 2i.

17

Example: simple multi-set
Supports operations Insert and Find.
Idea:
Collection of arrays Ai with Length 2i

Every array is either entirely empty or entirely full and stores items in a
sorted order
Between the arrays there is no further relationship

Data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, 20, 24, 36, 48, 75]
We use 0-indexing, such that for the lengths |Ai| = 2i. 17

Example: simple multi-set

For any n œ N, we can store exactly n elements in our multi set, without
partially-filled arrays. Intuition: binary representation of n.

#elements in multi-set = |Ak| + |Ak≠1| + . . . + |A0|

= bk2k + bk≠12k≠1 + . . . + b020

= (bk bk≠1 . . . b0)2

Where bi = 0 if |Ai| = 0, and 1 if |Ai| = 2i.

18

Example: simple multi-set

Data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, 20, 24, 36, 48, 75]

Algorithm Find:

Perform a binary search on each array
Worst-case Runtime: �(log2 n),

log 1 + log 2 + log 4 + · · · + log 2k =
kÿ

i=0
log2 2i = k · (k + 1)

2 œ �(log2 n).

(k = Âlog2 nÊ)

19

Example: simple multi-set

Data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, 20, 24, 36, 48, 75]

Algorithm Find: Perform a binary search on each array
Worst-case Runtime:

�(log2 n),

log 1 + log 2 + log 4 + · · · + log 2k =
kÿ

i=0
log2 2i = k · (k + 1)

2 œ �(log2 n).

(k = Âlog2 nÊ)

19

Example: simple multi-set

Data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, 20, 24, 36, 48, 75]

Algorithm Find: Perform a binary search on each array
Worst-case Runtime: �(log2 n),

log 1 + log 2 + log 4 + · · · + log 2k =
kÿ

i=0
log2 2i = k · (k + 1)

2 œ �(log2 n).

(k = Âlog2 nÊ)

19

Example: simple multi-set

Data {1, 8, 10, 18, 20, 24, 36, 48, 50, 75, 99}, n = 11

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, 20, 24, 36, 48, 75]

Algorithm Find: Perform a binary search on each array
Worst-case Runtime: �(log2 n),

log 1 + log 2 + log 4 + · · · + log 2k =
kÿ

i=0
log2 2i = k · (k + 1)

2 œ �(log2 n).

(k = Âlog2 nÊ)

19

Example: simple multi-set
Algorithm Insert(x):

New array AÕ
0 Ω [x], i Ω 0

while Ai ”= ÿ, set AÕ
i+1 =Merge(Ai, AÕ

i), Ai Ω ÿ, i Ω i + 1
Set Ai Ω AÕ

i

Insert(11)

Pre-insert

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, . . . , 75]

Temporary

AÕ
0: [11]

AÕ
1: [11, 50]

AÕ
2: [8, 11, 50, 99]

=∆

Post-insert

A0: ÿ

A1: ÿ

A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

20

Example: simple multi-set
Algorithm Insert(x):
New array AÕ

0 Ω [x], i Ω 0

while Ai ”= ÿ, set AÕ
i+1 =Merge(Ai, AÕ

i), Ai Ω ÿ, i Ω i + 1
Set Ai Ω AÕ

i

Insert(11)

Pre-insert

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, . . . , 75]

Temporary

AÕ
0: [11]

AÕ
1: [11, 50]

AÕ
2: [8, 11, 50, 99]

=∆

Post-insert

A0: ÿ

A1: ÿ

A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

20

Example: simple multi-set
Algorithm Insert(x):
New array AÕ

0 Ω [x], i Ω 0
while Ai ”= ÿ, set AÕ

i+1 =Merge(Ai, AÕ
i), Ai Ω ÿ, i Ω i + 1

Set Ai Ω AÕ
i

Insert(11)

Pre-insert

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, . . . , 75]

Temporary

AÕ
0: [11]

AÕ
1: [11, 50]

AÕ
2: [8, 11, 50, 99]

=∆

Post-insert

A0: ÿ

A1: ÿ

A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

20

Example: simple multi-set
Algorithm Insert(x):
New array AÕ

0 Ω [x], i Ω 0
while Ai ”= ÿ, set AÕ

i+1 =Merge(Ai, AÕ
i), Ai Ω ÿ, i Ω i + 1

Set Ai Ω AÕ
i

Insert(11)

Pre-insert

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, . . . , 75]

Temporary

AÕ
0: [11]

AÕ
1: [11, 50]

AÕ
2: [8, 11, 50, 99]

=∆

Post-insert

A0: ÿ

A1: ÿ

A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

20

Example: simple multi-set
Algorithm Insert(x):
New array AÕ

0 Ω [x], i Ω 0
while Ai ”= ÿ, set AÕ

i+1 =Merge(Ai, AÕ
i), Ai Ω ÿ, i Ω i + 1

Set Ai Ω AÕ
i

Insert(11)

Pre-insert

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, . . . , 75]

Temporary

AÕ
0: [11]

AÕ
1: [11, 50]

AÕ
2: [8, 11, 50, 99]

=∆

Post-insert

A0: ÿ

A1: ÿ

A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

20

Example: simple multi-set
Algorithm Insert(x):
New array AÕ

0 Ω [x], i Ω 0
while Ai ”= ÿ, set AÕ

i+1 =Merge(Ai, AÕ
i), Ai Ω ÿ, i Ω i + 1

Set Ai Ω AÕ
i

Insert(11)

Pre-insert

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, . . . , 75]

Temporary

AÕ
0: [11]

AÕ
1: [11, 50]

AÕ
2: [8, 11, 50, 99]

=∆

Post-insert

A0: ÿ

A1: ÿ

A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

20

Example: simple multi-set
Algorithm Insert(x):
New array AÕ

0 Ω [x], i Ω 0
while Ai ”= ÿ, set AÕ

i+1 =Merge(Ai, AÕ
i), Ai Ω ÿ, i Ω i + 1

Set Ai Ω AÕ
i

Insert(11)

Pre-insert

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, . . . , 75]

Temporary

AÕ
0: [11]

AÕ
1: [11, 50]

AÕ
2: [8, 11, 50, 99]

=∆

Post-insert

A0: ÿ

A1: ÿ

A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

20

Example: simple multi-set
Algorithm Insert(x):
New array AÕ

0 Ω [x], i Ω 0
while Ai ”= ÿ, set AÕ

i+1 =Merge(Ai, AÕ
i), Ai Ω ÿ, i Ω i + 1

Set Ai Ω AÕ
i

Insert(11)

Pre-insert

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, . . . , 75]

Temporary

AÕ
0: [11]

AÕ
1: [11, 50]

AÕ
2: [8, 11, 50, 99]

=∆

Post-insert

A0: ÿ

A1: ÿ

A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

20

Example: simple multi-set
Algorithm Insert(x):
New array AÕ

0 Ω [x], i Ω 0
while Ai ”= ÿ, set AÕ

i+1 =Merge(Ai, AÕ
i), Ai Ω ÿ, i Ω i + 1

Set Ai Ω AÕ
i

Insert(11)

Pre-insert

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, . . . , 75]

Temporary

AÕ
0: [11]

AÕ
1: [11, 50]

AÕ
2: [8, 11, 50, 99]

=∆

Post-insert

A0: ÿ

A1: ÿ

A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

20

Example: simple multi-set
Algorithm Insert(x):
New array AÕ

0 Ω [x], i Ω 0
while Ai ”= ÿ, set AÕ

i+1 =Merge(Ai, AÕ
i), Ai Ω ÿ, i Ω i + 1

Set Ai Ω AÕ
i

Insert(11)

Pre-insert

A0: [50]
A1: [8, 99]
A2: ÿ

A3: [1, 10, 18, . . . , 75]

Temporary

AÕ
0: [11]

AÕ
1: [11, 50]

AÕ
2: [8, 11, 50, 99]

=∆

Post-insert

A0: ÿ

A1: ÿ

A2: [8, 11, 50, 99]
A3: [1, 10, 18, . . . , 75]

20

Costs insert

In the following example: n = 2k, k = log2 n

Assumption: creating new array AÕ
i with length 2i (and, for i > 0 subsequent

merge of AÕ
i≠1 and Ai≠1) has costs �(2i)

In the worst case, inserting an element into the data structure provides
log2 n such operations.
∆ Worst-case Costs Insert:

kÿ

i=0
2i = 2k+1

≠ 1 œ �(n).

21

Costs insert

In the following example: n = 2k, k = log2 n

Assumption: creating new array AÕ
i with length 2i (and, for i > 0 subsequent

merge of AÕ
i≠1 and Ai≠1) has costs �(2i)

In the worst case, inserting an element into the data structure provides
log2 n such operations.
∆ Worst-case Costs Insert:

kÿ

i=0
2i = 2k+1

≠ 1 œ �(n).

21

Costs insert

In the following example: n = 2k, k = log2 n

Assumption: creating new array AÕ
i with length 2i (and, for i > 0 subsequent

merge of AÕ
i≠1 and Ai≠1) has costs �(2i)

In the worst case, inserting an element into the data structure provides
log2 n such operations.

∆ Worst-case Costs Insert:
kÿ

i=0
2i = 2k+1

≠ 1 œ �(n).

21

Costs insert

In the following example: n = 2k, k = log2 n

Assumption: creating new array AÕ
i with length 2i (and, for i > 0 subsequent

merge of AÕ
i≠1 and Ai≠1) has costs �(2i)

In the worst case, inserting an element into the data structure provides
log2 n such operations.
∆ Worst-case Costs Insert:

kÿ

i=0
2i = 2k+1

≠ 1 œ �(n).

21

Aggregate analysis
Level Costs Example Array
0 1 [ú]
1 2 [ú, ú]
2 4 [ú, ú, ú, ú]
3 8 ÿ

4 16 [ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú]

Observation: Starting with an empty container, an insertion sequence
reaches level 0 each time, level 1 (with costs 2) every second time, level 2
(with costs 4) every fourth time, etc.

Total costs: 1 ·
n
1 + 2 ·

n
2 + 4 ·

n
4 + · · · + 2k

·
n
2k = (k + 1)n

This is in �(n log n) because k = log2 n.
Amortized cost per operation: �((n log n)/n) = �(log n).

22

Aggregate analysis
Level Costs Example Array
0 1 [ú]
1 2 [ú, ú]
2 4 [ú, ú, ú, ú]
3 8 ÿ

4 16 [ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú]

Observation: Starting with an empty container, an insertion sequence
reaches level 0 each time, level 1 (with costs 2) every second time, level 2
(with costs 4) every fourth time, etc.

Total costs: 1 ·
n
1 + 2 ·

n
2 + 4 ·

n
4 + · · · + 2k

·
n
2k = (k + 1)n

This is in �(n log n) because k = log2 n.
Amortized cost per operation: �((n log n)/n) = �(log n).

22

Aggregate analysis
Level Costs Example Array
0 1 [ú]
1 2 [ú, ú]
2 4 [ú, ú, ú, ú]
3 8 ÿ

4 16 [ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú]

Observation: Starting with an empty container, an insertion sequence
reaches level 0 each time, level 1 (with costs 2) every second time, level 2
(with costs 4) every fourth time, etc.

Total costs: 1 ·
n
1 + 2 ·

n
2 + 4 ·

n
4 + · · · + 2k

·
n
2k =

(k + 1)n
This is in �(n log n) because k = log2 n.

Amortized cost per operation: �((n log n)/n) = �(log n).

22

Aggregate analysis
Level Costs Example Array
0 1 [ú]
1 2 [ú, ú]
2 4 [ú, ú, ú, ú]
3 8 ÿ

4 16 [ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú, ú]

Observation: Starting with an empty container, an insertion sequence
reaches level 0 each time, level 1 (with costs 2) every second time, level 2
(with costs 4) every fourth time, etc.

Total costs: 1 ·
n
1 + 2 ·

n
2 + 4 ·

n
4 + · · · + 2k

·
n
2k = (k + 1)n

This is in �(n log n) because k = log2 n.
Amortized cost per operation: �((n log n)/n) = �(log n).

22

Account method

Ideas?

Every element i (1 Æ i Æ n) pays ai = log2 n coins when it is inserted into
the data structure.
The element pays the allocation of the first array and every subsequent
merge-step that can occur until the element has reached array Ak+1
(k = Âlog2 nÊ).
The account provides enough credit to pay for all Merge operations of the
n elements.

∆ Amortized costs for insertion O(log n)

23

Account method

Every element i (1 Æ i Æ n) pays ai = log2 n coins when it is inserted into
the data structure.

The element pays the allocation of the first array and every subsequent
merge-step that can occur until the element has reached array Ak+1
(k = Âlog2 nÊ).
The account provides enough credit to pay for all Merge operations of the
n elements.

∆ Amortized costs for insertion O(log n)

23

Account method

Every element i (1 Æ i Æ n) pays ai = log2 n coins when it is inserted into
the data structure.
The element pays the allocation of the first array and every subsequent
merge-step that can occur until the element has reached array Ak+1
(k = Âlog2 nÊ).

The account provides enough credit to pay for all Merge operations of the
n elements.

∆ Amortized costs for insertion O(log n)

23

Account method

Every element i (1 Æ i Æ n) pays ai = log2 n coins when it is inserted into
the data structure.
The element pays the allocation of the first array and every subsequent
merge-step that can occur until the element has reached array Ak+1
(k = Âlog2 nÊ).
The account provides enough credit to pay for all Merge operations of the
n elements.

∆ Amortized costs for insertion O(log n)

23

Account method

Every element i (1 Æ i Æ n) pays ai = log2 n coins when it is inserted into
the data structure.
The element pays the allocation of the first array and every subsequent
merge-step that can occur until the element has reached array Ak+1
(k = Âlog2 nÊ).
The account provides enough credit to pay for all Merge operations of the
n elements.

∆ Amortized costs for insertion O(log n)

23

Potential method

Ideas?

We know from the account method that each element on the way to
higher levels requires log n coins, i.e. that an element on level i still needs
to posess k ≠ i coins. We use the potential

�j =
ÿ

0ÆiÆk:Ai ”=ÿ
(k ≠ i) · 2i

24

Potential method

We know from the account method that each element on the way to higher
levels requires log n coins, i.e. that an element on level i still needs to
posess k ≠ i coins.

We use the potential

�j =
ÿ

0ÆiÆk:Ai ”=ÿ
(k ≠ i) · 2i

24

Potential method

We know from the account method that each element on the way to higher
levels requires log n coins, i.e. that an element on level i still needs to
posess k ≠ i coins. We use the potential

�j =
ÿ

0ÆiÆk:Ai ”=ÿ
(k ≠ i) · 2i

24

Potential method

We know from the account method that each element on the way to higher
levels requires log n coins, i.e. that an element on level i still needs to
posess k ≠ i coins. We use the potential

�j =
ÿ

0ÆiÆk:Ai ”=ÿ
(k ≠ i) · 2i

24

Potential method
For the change of the potential �j ≠ �j≠1 we only have to consider the
lower l levels that are occupied at time point j ≠ 1 (in analogy to the binary
counter). Let l be the smallest index such that array Al is empty.

After merging arrays A0 . . . Al≠1, array Al is full and arrays Ai(0 Æ i < l) are
now empty. Therefore:

�j ≠ �j≠1 = (k ≠ l) · 2l
≠

l≠1ÿ

i=0
(k ≠ i) · 2i

Real costs:

tj =
lÿ

i=0
2i = 2l+1

≠ 1

25

Potential method
For the change of the potential �j ≠ �j≠1 we only have to consider the
lower l levels that are occupied at time point j ≠ 1 (in analogy to the binary
counter). Let l be the smallest index such that array Al is empty.
After merging arrays A0 . . . Al≠1, array Al is full and arrays Ai(0 Æ i < l) are
now empty. Therefore:

�j ≠ �j≠1 = (k ≠ l) · 2l
≠

l≠1ÿ

i=0
(k ≠ i) · 2i

Real costs:

tj =
lÿ

i=0
2i = 2l+1

≠ 1

25

Potential method
For the change of the potential �j ≠ �j≠1 we only have to consider the
lower l levels that are occupied at time point j ≠ 1 (in analogy to the binary
counter). Let l be the smallest index such that array Al is empty.
After merging arrays A0 . . . Al≠1, array Al is full and arrays Ai(0 Æ i < l) are
now empty. Therefore:

�j ≠ �j≠1 = (k ≠ l) · 2l
≠

l≠1ÿ

i=0
(k ≠ i) · 2i

Real costs:

tj =
lÿ

i=0
2i = 2l+1

≠ 1

25

Potential method
For the change of the potential �j ≠ �j≠1 we only have to consider the
lower l levels that are occupied at time point j ≠ 1 (in analogy to the binary
counter). Let l be the smallest index such that array Al is empty.
After merging arrays A0 . . . Al≠1, array Al is full and arrays Ai(0 Æ i < l) are
now empty. Therefore:

�j ≠ �j≠1 = (k ≠ l) · 2l
≠

l≠1ÿ

i=0
(k ≠ i) · 2i

Real costs:

tj =
lÿ

i=0
2i = 2l+1

≠ 1

25

Potential method

�j ≠ �j≠1 = (k ≠ l) · 2l
≠

l≠1ÿ

i=0
(k ≠ i) · 2i

= (k ≠ l) · 2l
≠ k · (2l

≠ 1) +
l≠1ÿ

i=0
i · 2i

= (k ≠ l) · 2l
≠ k · (2l

≠ 1) + l · 2l
≠ 2l+1 + 2

= k ≠ 2l+1 + 2

=∆ �j ≠ �j≠1 + tj = k ≠ 2l+1 + 2 + 2l+1
≠ 1 = k + 1 œ �(log n)

See CLRS Chapter 16.

26

Potential method

�j ≠ �j≠1 = (k ≠ l) · 2l
≠

l≠1ÿ

i=0
(k ≠ i) · 2i

= (k ≠ l) · 2l
≠ k · (2l

≠ 1) +
l≠1ÿ

i=0
i · 2i

= (k ≠ l) · 2l
≠ k · (2l

≠ 1) + l · 2l
≠ 2l+1 + 2

= k ≠ 2l+1 + 2

=∆ �j ≠ �j≠1 + tj = k ≠ 2l+1 + 2 + 2l+1
≠ 1 = k + 1 œ �(log n)

See CLRS Chapter 16.

26

Potential method

�j ≠ �j≠1 = (k ≠ l) · 2l
≠

l≠1ÿ

i=0
(k ≠ i) · 2i

= (k ≠ l) · 2l
≠ k · (2l

≠ 1) +
l≠1ÿ

i=0
i · 2i

= (k ≠ l) · 2l
≠ k · (2l

≠ 1) + l · 2l
≠ 2l+1 + 2

= k ≠ 2l+1 + 2

=∆ �j ≠ �j≠1 + tj = k ≠ 2l+1 + 2 + 2l+1
≠ 1 = k + 1 œ �(log n)

See CLRS Chapter 16.
26

ÿ
i · ⁄i

Always the same trick:

⁄ ·

nÿ

i=0
i · ⁄i

≠

nÿ

i=0
i · ⁄i =

nÿ

i=0
i · ⁄i+1

≠

nÿ

i=0
i · ⁄i =

n+1ÿ

i=1
(i ≠ 1) · ⁄i

≠

nÿ

i=0
i · ⁄i

= n · ⁄n+1 +
nÿ

i=1
(i ≠ 1) · ⁄i

≠ i · ⁄ = n · ⁄n+1
≠

nÿ

i=1
⁄i

= n · ⁄n+1
≠

⁄n+1
≠ 1

⁄ ≠ 1 + 1

=∆ (⁄ ≠ 1) ·

nÿ

i=0
i · ⁄i = n · ⁄n+1

≠
⁄n+1

≠ 1
⁄ ≠ 1 + 1

For ⁄ = 2:
nÿ

i=0
i · 2i = n · 2n+1

≠ 2n+1 + 1 + 1 = (n ≠ 1) · 2n+1 + 2

27

ÿ
i · ⁄i

Always the same trick:

⁄ ·

nÿ

i=0
i · ⁄i

≠

nÿ

i=0
i · ⁄i =

nÿ

i=0
i · ⁄i+1

≠

nÿ

i=0
i · ⁄i =

n+1ÿ

i=1
(i ≠ 1) · ⁄i

≠

nÿ

i=0
i · ⁄i

= n · ⁄n+1 +
nÿ

i=1
(i ≠ 1) · ⁄i

≠ i · ⁄ = n · ⁄n+1
≠

nÿ

i=1
⁄i

= n · ⁄n+1
≠

⁄n+1
≠ 1

⁄ ≠ 1 + 1

=∆ (⁄ ≠ 1) ·

nÿ

i=0
i · ⁄i = n · ⁄n+1

≠
⁄n+1

≠ 1
⁄ ≠ 1 + 1

For ⁄ = 2:
nÿ

i=0
i · 2i = n · 2n+1

≠ 2n+1 + 1 + 1 = (n ≠ 1) · 2n+1 + 2

27

Quiz

void g(unsigned n){
for (unsigned k = 1; k != n ; ++k){

// what does the following code do?
unsigned prev = k-1;
for (unsigned num = k; num != 0; num /= 2){

if (num % 2 != prev % 2)
f();

prev /= 2;
}

}
}

Q: Asymptotic number of calls of f?

A: �(n) (Counting example from class).

28

Quiz

void g(unsigned n){
for (unsigned k = 1; k != n ; ++k){

// call f for all bits that toggle from k-1 to k
unsigned prev = k-1;
for (unsigned num = k; num != 0; num /= 2){

if (num % 2 != prev % 2)
f();

prev /= 2;
}

}
}

Q: Asymptotic number of calls of f?

A: �(n) (Counting example from class).

28

Quiz

void g(unsigned n){
for (unsigned k = 1; k != n ; ++k){

// call f for all bits that toggle from k-1 to k
unsigned prev = k-1;
for (unsigned num = k; num != 0; num /= 2){

if (num % 2 != prev % 2)
f();

prev /= 2;
}

}
}

Q: Asymptotic number of calls of f?
A: �(n) (Counting example from class).

28

Recap dynamically allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three”:
constructor
copy constructor
destructor

Being lazy “Rule of two”:
never copy (unsafe)
make copy constructor
private (safe) or deleted

29

Recap dynamically allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three”:
constructor
copy constructor
destructor

Being lazy “Rule of two”:
never copy (unsafe)
make copy constructor
private (safe) or deleted

29

Recap dynamically allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three”:
constructor
copy constructor
destructor

Being lazy “Rule of two”:
never copy (unsafe)
make copy constructor
private (safe) or deleted

29

7. Code-Example: Dynamically Sized Array

Preparation for code expert exercise Double Ended Queue

30

8. Tips for code expert

31

Tips for next code expert exercises
Task "Stable and In-Situ Sorting"

". . . in their unmodified form. . . "
Task "Amortized Analysis: Dynamic Array"

Ottman/Widmayer, Chapter 3.3 (depending on version)
Cormen et al, Chapter 17 (or 16 depending on version)

Task "Double Ended Queue"
Takes time – make sure to start early!
Dynamic data types and memory management (fun!)
By the way: the name Double Ended Queue may be misleading because
it suggests to be implemented with a linked list. This would make it
hard, if not impossible, to fulfill the requirements stated above. Rather
think of something like a vector and extend it with push_front()

32

Tips for next code expert exercises
Task "Stable and In-Situ Sorting"

". . . in their unmodified form. . . "

Task "Amortized Analysis: Dynamic Array"
Ottman/Widmayer, Chapter 3.3 (depending on version)
Cormen et al, Chapter 17 (or 16 depending on version)

Task "Double Ended Queue"
Takes time – make sure to start early!
Dynamic data types and memory management (fun!)
By the way: the name Double Ended Queue may be misleading because
it suggests to be implemented with a linked list. This would make it
hard, if not impossible, to fulfill the requirements stated above. Rather
think of something like a vector and extend it with push_front()

32

Tips for next code expert exercises
Task "Stable and In-Situ Sorting"

". . . in their unmodified form. . . "
Task "Amortized Analysis: Dynamic Array"

Ottman/Widmayer, Chapter 3.3 (depending on version)
Cormen et al, Chapter 17 (or 16 depending on version)

Task "Double Ended Queue"
Takes time – make sure to start early!
Dynamic data types and memory management (fun!)
By the way: the name Double Ended Queue may be misleading because
it suggests to be implemented with a linked list. This would make it
hard, if not impossible, to fulfill the requirements stated above. Rather
think of something like a vector and extend it with push_front()

32

Tips for next code expert exercises
Task "Stable and In-Situ Sorting"

". . . in their unmodified form. . . "
Task "Amortized Analysis: Dynamic Array"

Ottman/Widmayer, Chapter 3.3 (depending on version)
Cormen et al, Chapter 17 (or 16 depending on version)

Task "Double Ended Queue"
Takes time – make sure to start early!
Dynamic data types and memory management (fun!)
By the way: the name Double Ended Queue may be misleading because
it suggests to be implemented with a linked list. This would make it
hard, if not impossible, to fulfill the requirements stated above. Rather
think of something like a vector and extend it with push_front()

32

Tips for next code expert exercises
Task "Stable and In-Situ Sorting"

". . . in their unmodified form. . . "
Task "Amortized Analysis: Dynamic Array"

Ottman/Widmayer, Chapter 3.3 (depending on version)
Cormen et al, Chapter 17 (or 16 depending on version)

Task "Double Ended Queue"

Takes time – make sure to start early!
Dynamic data types and memory management (fun!)
By the way: the name Double Ended Queue may be misleading because
it suggests to be implemented with a linked list. This would make it
hard, if not impossible, to fulfill the requirements stated above. Rather
think of something like a vector and extend it with push_front()

32

Tips for next code expert exercises
Task "Stable and In-Situ Sorting"

". . . in their unmodified form. . . "
Task "Amortized Analysis: Dynamic Array"

Ottman/Widmayer, Chapter 3.3 (depending on version)
Cormen et al, Chapter 17 (or 16 depending on version)

Task "Double Ended Queue"
Takes time – make sure to start early!
Dynamic data types and memory management (fun!)
By the way: the name Double Ended Queue may be misleading because
it suggests to be implemented with a linked list. This would make it
hard, if not impossible, to fulfill the requirements stated above. Rather
think of something like a vector and extend it with push_front()

32

9. Old Exam Question

33

Recurrence Equation

(D&A Exam 25.8.2022)

34

Recurrence Equation – Solution I

(D&A Exam 25.8.2022)

35

Recurrence Equation – Solution II

(D&A Exam 25.8.2022)
36

10. Outro

37

General Questions?

38

See you next time

Have a nice week!

39

