
Exercise Session 05 – Hashing
Data Structures and Algorithms
These slides are based on those of the lecture, but were adapted and
extended by the teaching assistant Adel Gavranović



Today’s Schedule

Intro
Follow-up
Feedback for code expert
Learning Objectives
Repetition: Throwing Eggs
Selection
Hashing
Code-Example: Hashtables, Hash-
functions and Collisions
Old Exam Question
Tips for code expert
Outro

n.ethz.ch/~agavranovic

Exercise Session Material

Adel’s Webpage

Mail to Adel

1



Comic of the Week

xkcd 2



1. Intro

3



Intro

My voice is a little strained today – Sorry

4



Intro

My voice is a little strained today – Sorry

4



2. Follow-up

5



Follow-up from last exercise session

Regarding last week’s in-class coding exercise

No worries if you were not able to solve the example exercise during the
session
It was a rather hard task to get into (no matter how “easy” it was to solve)

In general: the master solutions will now be published sooner

6



Follow-up from last exercise session

Regarding last week’s in-class coding exercise

No worries if you were not able to solve the example exercise during the
session
It was a rather hard task to get into (no matter how “easy” it was to solve)

In general: the master solutions will now be published sooner

6



Follow-up from last exercise session

Regarding last week’s in-class coding exercise

No worries if you were not able to solve the example exercise during the
session
It was a rather hard task to get into (no matter how “easy” it was to solve)

In general: the master solutions will now be published sooner

6



3. Feedback for code expert

7



General things regarding code expert

If you submit via PDF-upload

Make sure to mention it in the submission
Make sure its high resolution or a PDF

8



General things regarding code expert

If you submit via PDF-upload

Make sure to mention it in the submission
Make sure its high resolution or a PDF

8



Task "Prefix Sum in 2D"

Don’t use []-accessing but instead use .at()

It’s safer (because it checks for out-of-bounds access)
It might give better error messages as to where the error occurred

9



Task "Prefix Sum in 2D"

Don’t use []-accessing but instead use .at()

It’s safer (because it checks for out-of-bounds access)
It might give better error messages as to where the error occurred

9



Task "Sliding Window"

Most of you only implemented one (out of three) correctly or at all

Which is good enough to obtain the XP
The phrasing was a little ambiguous

10



Task "Sliding Window"

Most of you only implemented one (out of three) correctly or at all

Which is good enough to obtain the XP
The phrasing was a little ambiguous

10



Questions regarding code expert from your side?

11



4. Learning Objectives

12



Learning Objectives

⇤ Understand Hashing, its components, and related concepts:
⇤ Prehashing
⇤ Collision
⇤ Simple Uniform Hashing
⇤ Uniform Hashing
⇤ Open Addressing
⇤ Closed Hashing
⇤ Chaining

⇤ Be able to apply simple hashing methods by hand

13



5. Repetition: Throwing Eggs

14



Throwing eggs

What would be your strategy if you would have an arbitrary number of
eggs and n floors?

Binary search. Worst case: log2 n tries.

What would you do if you only had one egg?

Start from the bottom. n tries.

15



Throwing eggs

What would be your strategy if you would have an arbitrary number of
eggs and n floors?

Binary search. Worst case: log2 n tries.

What would you do if you only had one egg?

Start from the bottom. n tries.

15



Throwing eggs

What would be your strategy if you would have an arbitrary number of
eggs and n floors?

Binary search. Worst case: log2 n tries.

What would you do if you only had one egg?

Start from the bottom. n tries.

15



Throwing eggs

What would be your strategy if you would have an arbitrary number of
eggs and n floors?

Binary search. Worst case: log2 n tries.

What would you do if you only had one egg?

Start from the bottom. n tries.

15



Throwing eggs

Strategy using two eggs
First approach: intervals of equal length:

partition n into k intervals:
maximum number of trials f(k) = k + n/k ≠ 1
Minimize maximum number of trials: f Õ(k) = 1 ≠ n/k2 = 0 ∆ k = Ô

n.
n = 100 ∆ 19 Trials. �(Ôn)
Second approach: take first throw trial into account by considering
decreasing interval sizes. Choose smallest s such that
s + s ≠ 1 + s ≠ 2 + ... + 1 = s(s + 1)/2 Ø n. If n = 100 then s = 14.
Maximum number of trials: s œ �(Ôn)

Asymptotically both approaches are equally good.

16



Throwing eggs

Strategy using two eggs
First approach: intervals of equal length: partition n into k intervals:

maximum number of trials f(k) = k + n/k ≠ 1
Minimize maximum number of trials: f Õ(k) = 1 ≠ n/k2 = 0 ∆ k = Ô

n.
n = 100 ∆ 19 Trials. �(Ôn)
Second approach: take first throw trial into account by considering
decreasing interval sizes. Choose smallest s such that
s + s ≠ 1 + s ≠ 2 + ... + 1 = s(s + 1)/2 Ø n. If n = 100 then s = 14.
Maximum number of trials: s œ �(Ôn)

Asymptotically both approaches are equally good.

16



Throwing eggs

Strategy using two eggs
First approach: intervals of equal length: partition n into k intervals:
maximum number of trials

f(k) = k + n/k ≠ 1
Minimize maximum number of trials: f Õ(k) = 1 ≠ n/k2 = 0 ∆ k = Ô

n.
n = 100 ∆ 19 Trials. �(Ôn)
Second approach: take first throw trial into account by considering
decreasing interval sizes. Choose smallest s such that
s + s ≠ 1 + s ≠ 2 + ... + 1 = s(s + 1)/2 Ø n. If n = 100 then s = 14.
Maximum number of trials: s œ �(Ôn)

Asymptotically both approaches are equally good.

16



Throwing eggs

Strategy using two eggs
First approach: intervals of equal length: partition n into k intervals:
maximum number of trials f(k) = k + n/k ≠ 1
Minimize maximum number of trials:

f Õ(k) = 1 ≠ n/k2 = 0 ∆ k = Ô
n.

n = 100 ∆ 19 Trials. �(Ôn)
Second approach: take first throw trial into account by considering
decreasing interval sizes. Choose smallest s such that
s + s ≠ 1 + s ≠ 2 + ... + 1 = s(s + 1)/2 Ø n. If n = 100 then s = 14.
Maximum number of trials: s œ �(Ôn)

Asymptotically both approaches are equally good.

16



Throwing eggs

Strategy using two eggs
First approach: intervals of equal length: partition n into k intervals:
maximum number of trials f(k) = k + n/k ≠ 1
Minimize maximum number of trials: f Õ(k) = 1 ≠ n/k2 = 0 ∆ k = Ô

n.
n = 100 ∆ 19 Trials. �(Ôn)

Second approach: take first throw trial into account by considering
decreasing interval sizes. Choose smallest s such that
s + s ≠ 1 + s ≠ 2 + ... + 1 = s(s + 1)/2 Ø n. If n = 100 then s = 14.
Maximum number of trials: s œ �(Ôn)

Asymptotically both approaches are equally good.

16



Throwing eggs

Strategy using two eggs
First approach: intervals of equal length: partition n into k intervals:
maximum number of trials f(k) = k + n/k ≠ 1
Minimize maximum number of trials: f Õ(k) = 1 ≠ n/k2 = 0 ∆ k = Ô

n.
n = 100 ∆ 19 Trials. �(Ôn)
Second approach: take first throw trial into account by considering
decreasing interval sizes.

Choose smallest s such that
s + s ≠ 1 + s ≠ 2 + ... + 1 = s(s + 1)/2 Ø n. If n = 100 then s = 14.
Maximum number of trials: s œ �(Ôn)

Asymptotically both approaches are equally good.

16



Throwing eggs

Strategy using two eggs
First approach: intervals of equal length: partition n into k intervals:
maximum number of trials f(k) = k + n/k ≠ 1
Minimize maximum number of trials: f Õ(k) = 1 ≠ n/k2 = 0 ∆ k = Ô

n.
n = 100 ∆ 19 Trials. �(Ôn)
Second approach: take first throw trial into account by considering
decreasing interval sizes. Choose smallest s such that
s + s ≠ 1 + s ≠ 2 + ... + 1 = s(s + 1)/2 Ø n.

If n = 100 then s = 14.
Maximum number of trials: s œ �(Ôn)

Asymptotically both approaches are equally good.

16



Throwing eggs

Strategy using two eggs
First approach: intervals of equal length: partition n into k intervals:
maximum number of trials f(k) = k + n/k ≠ 1
Minimize maximum number of trials: f Õ(k) = 1 ≠ n/k2 = 0 ∆ k = Ô

n.
n = 100 ∆ 19 Trials. �(Ôn)
Second approach: take first throw trial into account by considering
decreasing interval sizes. Choose smallest s such that
s + s ≠ 1 + s ≠ 2 + ... + 1 = s(s + 1)/2 Ø n. If n = 100 then s = 14.
Maximum number of trials: s œ �(Ôn)

Asymptotically both approaches are equally good.

16



Throwing eggs

Strategy using two eggs
First approach: intervals of equal length: partition n into k intervals:
maximum number of trials f(k) = k + n/k ≠ 1
Minimize maximum number of trials: f Õ(k) = 1 ≠ n/k2 = 0 ∆ k = Ô

n.
n = 100 ∆ 19 Trials. �(Ôn)
Second approach: take first throw trial into account by considering
decreasing interval sizes. Choose smallest s such that
s + s ≠ 1 + s ≠ 2 + ... + 1 = s(s + 1)/2 Ø n. If n = 100 then s = 14.
Maximum number of trials: s œ �(Ôn)

Asymptotically both approaches are equally good.

16



6. Selection

17



Selection algorithm

What happens if many elements are equal when partitioning?
5 5 5 5 5 5 5 5 5 5

smaller partition is empty, larger n ≠ 1 times 5
left

right 5 5 5 5 5 5 5 5 5 5

degrade runtime to n2

Solution?

18



Selection algorithm

What happens if many elements are equal when partitioning?
5 5 5 5 5 5 5 5 5 5

smaller partition is empty, larger n ≠ 1 times 5
left

right 5 5 5 5 5 5 5 5 5 5

degrade runtime to n2

Solution?

18



Selection algorithm

What happens if many elements are equal when partitioning?
5 5 5 5 5 5 5 5 5 5

smaller partition is empty, larger n ≠ 1 times 5
left

right 5 5 5 5 5 5 5 5 5 5

degrade runtime to n2

Solution?

18



Selection algorithm

What happens if many elements are equal when partitioning?
5 5 5 5 5 5 5 5 5 5

smaller partition is empty, larger n ≠ 1 times 5
left

right 5 5 5 5 5 5 5 5 5 5

degrade runtime to n2

Solution?

18



Selection algorithm

What happens if many elements are equal when partitioning?
5 5 5 5 5 5 5 5 5 5

smaller partition is empty, larger n ≠ 1 times 5
left

right 5 5 5 5 5 5 5 5 5 5

degrade runtime to n2

Solution?

18



Selection algorithm

On equality with pivot, alternate between partitions

Modify algorithm to return number of elements equal to pivot

19



Selection algorithm

On equality with pivot, alternate between partitions
Modify algorithm to return number of elements equal to pivot

19



Demonstration with pivot 5

Input

Left

Right

5 4

5

5

6 5

5 4 5 5 6 5

20



Demonstration with pivot 5

Input

Left

Right

5

4

5

5

6 5

5

4 5 5 6 5

20



Demonstration with pivot 5

Input

Left

Right

5 4

5

5

6 5

5 4

5 5 6 5

20



Demonstration with pivot 5

Input

Left

Right

5 4

5

5

6 5

5 4 5

5 6 5

20



Demonstration with pivot 5

Input

Left

Right

5 4

5

5

6 5

5 4 5 5

6 5

20



Demonstration with pivot 5

Input

Left

Right

5 4

5

5

6

5

5 4 5 5 6

5

20



Demonstration with pivot 5

Input

Left

Right

5 4

5

5

6 5

5 4 5 5 6 5

20



7. Hashing

21



Hashing well-done

Useful Hashing. . .
distributes the keys as uniformly as possible in the hash table.
avoids probing over long areas of used entries
(e.g. primary clustering).
avoids using the same probing sequence for keys with the same hash
value (e.g. secondary clustering).

22



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o�set(j, k):

linear probing,
o�set(j, k) = j.
Double Hashing,
o�set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 417 45

254 17 45

23



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o�set(j, k):

linear probing,
o�set(j, k) = j.
Double Hashing,
o�set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25

417 45

254 17 45

23



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o�set(j, k):

linear probing,
o�set(j, k) = j.
Double Hashing,
o�set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 4

17 45

254 17 45

23



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o�set(j, k):

linear probing,
o�set(j, k) = j.
Double Hashing,
o�set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 417

45

254 17 45

23



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o�set(j, k):

linear probing,
o�set(j, k) = j.
Double Hashing,
o�set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 417 45

254 17 45

23



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o�set(j, k):

linear probing,
o�set(j, k) = j.
Double Hashing,
o�set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 417 45

25

4 17 45

23



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o�set(j, k):

linear probing,
o�set(j, k) = j.
Double Hashing,
o�set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 417 45

254

17 45

23



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o�set(j, k):

linear probing,
o�set(j, k) = j.
Double Hashing,
o�set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 417 45

254 17

45

23



Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + o�set(j, k):

linear probing,
o�set(j, k) = j.
Double Hashing,
o�set(j, k) = j · (1 + (k mod 5)).

0 1 2 3 4 5 6

25 417 45

254 17 45

23



Quiz: Hashing
A hash table of length 10 uses closed hashing with hash function h(k) = k mod 10,
and linear probing (probing goes to the right). After inserting five values into an
empty hash table, the table is as shown below.

0 1 2 3 4 5 6 7 8 9
32 52 33 74 96

Which of the following choice(s) give possible order(s) in which the key values
could have been inserted in the table?

(A) 32, 33, 52, 96, 74
(B) 32, 52, 33, 74, 96
(C) 32, 52, 74, 96, 33
(D) 96, 32, 52, 33, 74

24



Quiz: Hashing
A hash table of length 10 uses closed hashing with hash function h(k) = k mod 10,
and linear probing (probing goes to the right). After inserting five values into an
empty hash table, the table is as shown below.

0 1 2 3 4 5 6 7 8 9
32 52 33 74 96

Which of the following choice(s) give possible order(s) in which the key values
could have been inserted in the table?

(A) 32, 33, 52, 96, 74
(B) 32, 52, 33, 74, 96
(C) 32, 52, 74, 96, 33
(D) 96, 32, 52, 33, 74

24



Vocabulary of related concepts

Prehashing
ph(k) æ . i.e. mapping keys onto integers for further use
Collision
h(ki) = h(kj) i ”= j. i.e. hash function maps two di�erent keys onto
same integer
Chaining
Store all h(ki) = h(kj) i ”= j in one (worst case very long) linked list.
Positive: can overcommit (more entries than slots) and easy to remove
entries. Negative: Memory consumption of the chains. Alternative:
Closed hashing with open addressing
Closed Hashing
Entries stays in table

25



Vocabulary of related concepts

Prehashing

ph(k) æ . i.e. mapping keys onto integers for further use
Collision
h(ki) = h(kj) i ”= j. i.e. hash function maps two di�erent keys onto
same integer
Chaining
Store all h(ki) = h(kj) i ”= j in one (worst case very long) linked list.
Positive: can overcommit (more entries than slots) and easy to remove
entries. Negative: Memory consumption of the chains. Alternative:
Closed hashing with open addressing
Closed Hashing
Entries stays in table

25



Vocabulary of related concepts

Prehashing
ph(k) æ . i.e. mapping keys onto integers for further use
Collision

h(ki) = h(kj) i ”= j. i.e. hash function maps two di�erent keys onto
same integer
Chaining
Store all h(ki) = h(kj) i ”= j in one (worst case very long) linked list.
Positive: can overcommit (more entries than slots) and easy to remove
entries. Negative: Memory consumption of the chains. Alternative:
Closed hashing with open addressing
Closed Hashing
Entries stays in table

25



Vocabulary of related concepts

Prehashing
ph(k) æ . i.e. mapping keys onto integers for further use
Collision
h(ki) = h(kj) i ”= j. i.e. hash function maps two di�erent keys onto
same integer
Chaining

Store all h(ki) = h(kj) i ”= j in one (worst case very long) linked list.
Positive: can overcommit (more entries than slots) and easy to remove
entries. Negative: Memory consumption of the chains. Alternative:
Closed hashing with open addressing
Closed Hashing
Entries stays in table

25



Vocabulary of related concepts

Prehashing
ph(k) æ . i.e. mapping keys onto integers for further use
Collision
h(ki) = h(kj) i ”= j. i.e. hash function maps two di�erent keys onto
same integer
Chaining
Store all h(ki) = h(kj) i ”= j in one (worst case very long) linked list.
Positive: can overcommit (more entries than slots) and easy to remove
entries. Negative: Memory consumption of the chains. Alternative:
Closed hashing with open addressing
Closed Hashing

Entries stays in table

25



Vocabulary of related concepts

Prehashing
ph(k) æ . i.e. mapping keys onto integers for further use
Collision
h(ki) = h(kj) i ”= j. i.e. hash function maps two di�erent keys onto
same integer
Chaining
Store all h(ki) = h(kj) i ”= j in one (worst case very long) linked list.
Positive: can overcommit (more entries than slots) and easy to remove
entries. Negative: Memory consumption of the chains. Alternative:
Closed hashing with open addressing
Closed Hashing
Entries stays in table

25



Vocabulary of related concepts

Simple Uniform Hashing
each key is equally likely to hash to any of the m slots, independently
of where any other key has hashed to
Uniform Hashing
the probing sequence of each key is equally likely to be any of the m!
permutations of the possible sequences over the hash table of size m

Open Addressing
Position in hash table is not fixed and depends on previous entries

26



Vocabulary of related concepts

Simple Uniform Hashing

each key is equally likely to hash to any of the m slots, independently
of where any other key has hashed to
Uniform Hashing
the probing sequence of each key is equally likely to be any of the m!
permutations of the possible sequences over the hash table of size m

Open Addressing
Position in hash table is not fixed and depends on previous entries

26



Vocabulary of related concepts

Simple Uniform Hashing
each key is equally likely to hash to any of the m slots, independently
of where any other key has hashed to
Uniform Hashing

the probing sequence of each key is equally likely to be any of the m!
permutations of the possible sequences over the hash table of size m

Open Addressing
Position in hash table is not fixed and depends on previous entries

26



Vocabulary of related concepts

Simple Uniform Hashing
each key is equally likely to hash to any of the m slots, independently
of where any other key has hashed to
Uniform Hashing
the probing sequence of each key is equally likely to be any of the m!
permutations of the possible sequences over the hash table of size m

Open Addressing

Position in hash table is not fixed and depends on previous entries

26



Vocabulary of related concepts

Simple Uniform Hashing
each key is equally likely to hash to any of the m slots, independently
of where any other key has hashed to
Uniform Hashing
the probing sequence of each key is equally likely to be any of the m!
permutations of the possible sequences over the hash table of size m

Open Addressing
Position in hash table is not fixed and depends on previous entries

26



8. Code-Example: Hashtables,
Hashfunctions and Collisions

Hands-on example: importance of a well designed hashing strategy-

27



9. Old Exam Question

28



Hashing

29



Hashing – Solution

30



10. Tips for code expert

31



Finding a Sub-Array

Given: two integer arrays A = (a0, . . . , an≠1) and B = (b0, . . . , bk≠1)
Task: Find position of B in A.

Naive: Loop through A, check whether the following k entries match B.

O(nk) comparison operations

Solution using hashing: Calculate hash h(B) and compare it to
h((ai, ai+1, . . . , ai+k≠1)).
Avoid re-computing h((ai, ai+1, . . . , ai+k≠1) for each i =∆ O(n)
expected

32



Finding a Sub-Array

Given: two integer arrays A = (a0, . . . , an≠1) and B = (b0, . . . , bk≠1)
Task: Find position of B in A.
Naive: Loop through A, check whether the following k entries match B.

O(nk) comparison operations

Solution using hashing: Calculate hash h(B) and compare it to
h((ai, ai+1, . . . , ai+k≠1)).
Avoid re-computing h((ai, ai+1, . . . , ai+k≠1) for each i =∆ O(n)
expected

32



Finding a Sub-Array

Given: two integer arrays A = (a0, . . . , an≠1) and B = (b0, . . . , bk≠1)
Task: Find position of B in A.
Naive: Loop through A, check whether the following k entries match B.

O(nk) comparison operations

Solution using hashing: Calculate hash h(B) and compare it to
h((ai, ai+1, . . . , ai+k≠1)).
Avoid re-computing h((ai, ai+1, . . . , ai+k≠1) for each i =∆ O(n)
expected

32



Finding a Sub-Array

Given: two integer arrays A = (a0, . . . , an≠1) and B = (b0, . . . , bk≠1)
Task: Find position of B in A.
Naive: Loop through A, check whether the following k entries match B.

O(nk) comparison operations

Solution using hashing: Calculate hash h(B) and compare it to
h((ai, ai+1, . . . , ai+k≠1)).
Avoid re-computing h((ai, ai+1, . . . , ai+k≠1) for each i =∆ O(n)
expected

32



Sliding Window Hash

Possible hash function: sum of all elements:

Can be updated easily: subtract ai and add ai+k .
However: bad hash function

Better:

Hc,m((ai, · · · , ai+k≠1)) =
Q

a
k≠1ÿ

j=0
ai+j · ck≠j≠1

R

b mod m

c = 1021 prime number
m = 215 int, no overflows at calculations

33



Sliding Window Hash

Possible hash function: sum of all elements:

Can be updated easily: subtract ai and add ai+k .
However: bad hash function

Better:

Hc,m((ai, · · · , ai+k≠1)) =
Q

a
k≠1ÿ

j=0
ai+j · ck≠j≠1

R

b mod m

c = 1021 prime number
m = 215 int, no overflows at calculations

33



Sliding Window Hash

Make sure that
the algorithm computes ck only once,
all computations are modulo m for all values in order not to get an
overflow (recall the rules of modular arithmetic), and
the values are always positive (e.g., by adding multiples of m).

34



Computing with Modulo

(a + b) mod m = ((a mod m) + (b mod m)) mod m

(a ≠ b) mod m = ((a mod m) ≠ (b mod m) + m) mod m

(a · b) mod m = ((a mod m) · (b mod m)) mod m

Exercise: Compute

12746357 mod 11

35



Computing Modulo

Exercise: Compute

12746357 mod 11

= (7 + 5 · 10 + 3 · 102 + 6 · 103 + 4 · 104 + 7 · 105 + 2 · 106 + 1 · 107) mod 11
= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) mod 11
= (7 + 6 + 3 + 5 + 4 + 4 + 2 + 10) mod 11
= 8 mod 11.

For the second equality we used the fact that 102 mod 11 = 1.

36



Computing Modulo

Exercise: Compute

12746357 mod 11
= (7 + 5 · 10 + 3 · 102 + 6 · 103 + 4 · 104 + 7 · 105 + 2 · 106 + 1 · 107) mod 11

= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) mod 11
= (7 + 6 + 3 + 5 + 4 + 4 + 2 + 10) mod 11
= 8 mod 11.

For the second equality we used the fact that 102 mod 11 = 1.

36



Computing Modulo

Exercise: Compute

12746357 mod 11
= (7 + 5 · 10 + 3 · 102 + 6 · 103 + 4 · 104 + 7 · 105 + 2 · 106 + 1 · 107) mod 11
= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) mod 11

= (7 + 6 + 3 + 5 + 4 + 4 + 2 + 10) mod 11
= 8 mod 11.

For the second equality we used the fact that 102 mod 11 = 1.

36



Computing Modulo

Exercise: Compute

12746357 mod 11
= (7 + 5 · 10 + 3 · 102 + 6 · 103 + 4 · 104 + 7 · 105 + 2 · 106 + 1 · 107) mod 11
= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) mod 11
= (7 + 6 + 3 + 5 + 4 + 4 + 2 + 10) mod 11

= 8 mod 11.

For the second equality we used the fact that 102 mod 11 = 1.

36



Computing Modulo

Exercise: Compute

12746357 mod 11
= (7 + 5 · 10 + 3 · 102 + 6 · 103 + 4 · 104 + 7 · 105 + 2 · 106 + 1 · 107) mod 11
= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) mod 11
= (7 + 6 + 3 + 5 + 4 + 4 + 2 + 10) mod 11
= 8 mod 11.

For the second equality we used the fact that 102 mod 11 = 1.

36



11. Outro

37



General Questions?

38



See you next time

Have a nice week!
[rw::gettogether] is this Friday!

39


