
Exercise Session 06 – Trees
Data Structures and Algorithms
These slides are based on those of the lecture, but were adapted and
extended by the teaching assistant Adel Gavranović



Today’s Schedule

Intro
Follow-up
Feedback for code expert
Learning Objectives
Repetition theory

Binary Trees and Heaps
Binary Trees
2-3 Trees
Red-Black Trees

Code-Example
Old Exam Question
Outro

n.ethz.ch/~agavranovic

Exercise Session Material

Adel’s Webpage

Mail to Adel

1



Comic of the Week

xkcd

2



1. Intro

3



Intro

Lots of exercises today so get your tablets and styli ready!

4



Intro

Lots of exercises today so get your tablets and styli ready!

4



2. Follow-up

5



Follow-up from last exercise session

None(?)

6



Follow-up from last exercise session

None(?)

6



3. Feedback for code expert

7



General things regarding code expert

I’m working on the corrections with highest priority

If there’s anyone still waiting for the code expert text task corrections for
unlocking the Bonus Exercise: Send me an email ASAP

Please send me questions before Thursday so I can prepare for them
properly and give more useful answers during/after the session (they
also might be relevant for others!)
Keep your code expert answers brief
You can answer in german too if that is easier for you

8



General things regarding code expert

I’m working on the corrections with highest priority

If there’s anyone still waiting for the code expert text task corrections for
unlocking the Bonus Exercise: Send me an email ASAP

Please send me questions before Thursday so I can prepare for them
properly and give more useful answers during/after the session (they
also might be relevant for others!)
Keep your code expert answers brief
You can answer in german too if that is easier for you

8



General things regarding code expert

I’m working on the corrections with highest priority

If there’s anyone still waiting for the code expert text task corrections for
unlocking the Bonus Exercise: Send me an email ASAP

Please send me questions before Thursday so I can prepare for them
properly and give more useful answers during/after the session (they
also might be relevant for others!)
Keep your code expert answers brief
You can answer in german too if that is easier for you

8



General things regarding code expert

I’m working on the corrections with highest priority

If there’s anyone still waiting for the code expert text task corrections for
unlocking the Bonus Exercise: Send me an email ASAP

Please send me questions before Thursday so I can prepare for them
properly and give more useful answers during/after the session (they
also might be relevant for others!)

Keep your code expert answers brief
You can answer in german too if that is easier for you

8



General things regarding code expert

I’m working on the corrections with highest priority

If there’s anyone still waiting for the code expert text task corrections for
unlocking the Bonus Exercise: Send me an email ASAP

Please send me questions before Thursday so I can prepare for them
properly and give more useful answers during/after the session (they
also might be relevant for others!)
Keep your code expert answers brief

You can answer in german too if that is easier for you

8



General things regarding code expert

I’m working on the corrections with highest priority

If there’s anyone still waiting for the code expert text task corrections for
unlocking the Bonus Exercise: Send me an email ASAP

Please send me questions before Thursday so I can prepare for them
properly and give more useful answers during/after the session (they
also might be relevant for others!)
Keep your code expert answers brief
You can answer in german too if that is easier for you

8



Exercise Review: "The Master Method"

There was an error in the task description!

Written:

a Ø 1 and b > 1 are integer constants

But should be:

a Ø 1 and b > 1 are real constants
i.e. a, b don’t have to be integers

9



Exercise Review: "The Master Method"

There was an error in the task description!
Written:

a Ø 1 and b > 1 are integer constants

But should be:

a Ø 1 and b > 1 are real constants
i.e. a, b don’t have to be integers

9



Exercise Review: "The Master Method"

There was an error in the task description!
Written:

a Ø 1 and b > 1 are integer constants

But should be:

a Ø 1 and b > 1 are real constants
i.e. a, b don’t have to be integers

9



Exercise Review: "Comparing Sorting Algorithms"

Bubblesort min max
Comparisons �(n2) �(n2)
Sequence any any
Swaps 0 �(n2)
Sequence 1, 2, . . . , n n, n ≠ 1, . . . , 1

10



Exercise Review: "Comparing Sorting Algorithms"

InsertionSort min max
Comparisons �(n) �(n2)
Sequence 1, 2, . . . , n n, n ≠ 1, . . . , 1
Swaps 0 �(n2)
Sequence 1, 2, . . . , n n, n ≠ 1, . . . , 1

11



Exercise Review: "Comparing Sorting Algorithms"

SelectionSort min max
Comparisons �(n2) �(n2)
Sequence any any
Swaps 0 �(n)
Sequence 1, 2, . . . , n n, n ≠ 1, . . . , 1

12



Exercise Review: "Comparing Sorting Algorithms"

QuickSort min max
Comparisons �(n log n) �(n2)
Sequence complex 1, 2, . . . , n
Swaps �(n) �(n log n)
Sequence 1, 2, . . . , n complex

complex: Sequence must be made such that the pivot halves the sorting
range in each step. For example (n = 7): 4, 5, 7, 6, 2, 1, 3

13



"Require a constant amount of (additional) memory"

Basically, whenever an algorithm’s memory footprint is only a constant1
amount more than the data size n.

e.g. only storing a "highest so far"-variable (in addition to the data size n)
would entail a memory cost of 1 (constant)

1i.e. independent of the size n of the data
14



"Require a constant amount of (additional) memory"

Basically, whenever an algorithm’s memory footprint is only a constant1
amount more than the data size n.

e.g. only storing a "highest so far"-variable (in addition to the data size n)
would entail a memory cost of 1 (constant)

1i.e. independent of the size n of the data
14



"Require a constant amount of (additional) memory"

Basically, whenever an algorithm’s memory footprint is only a constant1
amount more than the data size n.

e.g. only storing a "highest so far"-variable (in addition to the data size n)
would entail a memory cost of 1 (constant)

1i.e. independent of the size n of the data
14



Stable / In Situ
In-Situ
QuickSort uses between �(log n) and O(n) extra space to keep track of
the recursive calls.
MergeSort has to merge repeatedly parts of the array. There are
complicated modifications to make MergeSort in-situ, but none that can
be achieved by simple modifications of the standard algorithm.

Stable
Stability of a sorting algorithm only refers to the order of elements with
the same value. Attribute each element with its original position and sort
by value plus position for elements with equal values. Maximally one
additional comparison per element (factor of 2), hence the asymptotic
running time stays the same.

15



Questions regarding code expert from your side?

"How to write answers in code expert that are legible"?
"How to upload PDF solutions to code expert correctly"?

16



Questions regarding code expert from your side?

"How to write answers in code expert that are legible"?

"How to upload PDF solutions to code expert correctly"?

16



Questions regarding code expert from your side?

"How to write answers in code expert that are legible"?
"How to upload PDF solutions to code expert correctly"?

16



4. Learning Objectives

17



Learning Objectives

⇤ Be able to perform basic operations on the most common trees

18



5. Repetition theory

19



5.1 Binary Trees and Heaps

20



Comparison of binary Trees

Search trees Heaps
Min- / Max- Heap

Balanced trees AVL,
red-black tree

in C++: std::make_heap std::map

3

4

5

7

9

16

1

2

235

7 9

16

1

4

2

3

4

5

7

9

16

1

Insertion �(h(T )) �(log n) �(log n)
Search �(h(T )) �(n) (!!) �(log n)

Deletion �(h(T )) Search + �(log n) �(log n)
Min/Max �(h(T )) �(1)/search �(log n)

Remark: �(log n)Æ �(h(T ))Æ �(n)

21



Comparison of binary Trees

Search trees Heaps
Min- / Max- Heap

Balanced trees AVL,
red-black tree

in C++: std::make_heap std::map

3

4

5

7

9

16

1

2

235

7 9

16

1

4

2

3

4

5

7

9

16

1

Insertion �(h(T )) �(log n) �(log n)
Search �(h(T )) �(n) (!!) �(log n)

Deletion �(h(T )) Search + �(log n) �(log n)
Min/Max �(h(T )) �(1)/search �(log n)

Remark: �(log n)Æ �(h(T ))Æ �(n)

21



Recall: Binary Tree as Array

22

20

16

3 2

12

8 11

18

15

14

17

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

22
1
20
2
18
3
16
4
12
5
15
6
17
7

3
8

2
9

8
10

11
11
14
12

22 20 18 16 12 15 17 3 2 8 11 14

22



Recall: Binary Tree as Array

22

20

16

3 2

12

8 11

18

15

14

17

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

22
1
20
2
18
3
16
4
12
5
15
6
17
7

3
8

2
9

8
10

11
11
14
12

22 20 18 16 12 15 17 3 2 8 11 14

22



Recall: Binary Tree as Array

22

20

16

3 2

12

8 11

18

15

14

17

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

22

1

20

2

18

3

16

4

12

5

15

6

17

7

3

8

2

9

8

10

11

11

14

12
22 20 18 16 12 15 17 3 2 8 11 14

22



Repetition: Binary Trees, Inserting a Key

Binary Search Trees
Search for Key.
Insert at the reached empty
leaf (null).

4

1 8

6

7

16

MinHeap
Insert at the very next free spot (back of
the array).
Restore Heap-Condition: siftUp (climb
successively).

1

4

8 6

7

16

23



Repetition: Binary Trees, Inserting a Key

Binary Search Trees
Search for Key.
Insert at the reached empty
leaf (null).

4

1 8

6

7

16

MinHeap
Insert at the very next free spot (back of
the array).
Restore Heap-Condition: siftUp (climb
successively).

1

4

8 6

7

16

Exercise: Insert 4, 8, 16, 1, 6, 7 into empty Search Tree/Min-Heap. 23



Repetition: Binary Trees, Inserting a Key

Binary Search Trees
Search for Key.
Insert at the reached empty
leaf (null).

4

1 8

6

7

16

MinHeap
Insert at the very next free spot (back of
the array).
Restore Heap-Condition: siftUp (climb
successively).

1

4

8 6

7

16

Exercise: Insert 4, 8, 16, 1, 6, 7 into empty Search Tree/Min-Heap. 23



Repetition: Binary Trees, Inserting a Key

Binary Search Trees
Search for Key.
Insert at the reached empty
leaf (null).

4

1 8

6

7

16

MinHeap
Insert at the very next free spot (back of
the array).
Restore Heap-Condition: siftUp (climb
successively).

1

4

8 6

7

16

Exercise: Insert 4, 8, 16, 1, 6, 7 into empty Search Tree/Min-Heap. 23



Repetition: Binary Trees, Deleting a Key

Binary Search Trees
Replace key k by symmetric
successor n.
Careful: What about right
child of n?

6

1 8

7 16

MinHeap
Replace key by last element of the array.
Restore Heap-Condition: siftDown or
siftUp.

1

6

8 16

7

24



Repetition: Binary Trees, Deleting a Key

Binary Search Trees
Replace key k by symmetric
successor n.
Careful: What about right
child of n?

6

1 8

7 16

MinHeap
Replace key by last element of the array.
Restore Heap-Condition: siftDown or
siftUp.

1

6

8 16

7

Exercise: Delete 4 from Search Tree/Min-Heap.
24



Repetition: Binary Trees, Deleting a Key

Binary Search Trees
Replace key k by symmetric
successor n.
Careful: What about right
child of n?

6

1 8

7 16

MinHeap
Replace key by last element of the array.
Restore Heap-Condition: siftDown or
siftUp.

1

6

8 16

7

Exercise: Delete 4 from Search Tree/Min-Heap.
24



Repetition: Binary Trees, Deleting a Key

Binary Search Trees
Replace key k by symmetric
successor n.
Careful: What about right
child of n?

6

1 8

7 16

MinHeap
Replace key by last element of the array.
Restore Heap-Condition: siftDown or
siftUp.

1

6

8 16

7

Exercise: Delete 4 from Search Tree/Min-Heap.
24



Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).

8, 3, 5, 4, 13, 10, 9, 19

postorder: Tleft(v), then Tright(v), then v.

4, 5, 3, 9, 10, 19, 13, 8

inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

25



Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then v.

4, 5, 3, 9, 10, 19, 13, 8

inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

25



Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then v.
4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

25



Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then v.
4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).
3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

25



Quiz

Draw a binary search tree each that represents the following traversals. Is
the tree unique?
inorder 1 2 3 4 5 6 7 8
preorder 4 3 1 2 8 6 5 7
postorder 1 3 2 5 6 8 7 4
Provide for each order a sequence of numbers from {1, . . . , 4} such that it
cannot result from a valid binary search tree

26



Answers

inorder: any binary search tree with numbers {1, . . . , 8} is valid.
The tree is not unique
There is no search tree for any non-sorted sequence. Counterexample 1 2 4 3

27



Answers

preorder 4 3 1 2 8 6 5 7

4

3

1

2

8

6

5 7

Tree is unique
It must hold recursively that first there is a group of numbers with lower and then
with higher number than the first value. Counterexample: 3 1 4 2

28



Answers
postorder 1 3 2 5 6 8 7 4

4

2

1 3

7

6

5

8

Tree is unique
Construction here: https://www.techiedelight.com/
build-binary-search-tree-from-postorder-sequence/, similar argument as
before, but backwards. Counterexample 4 2 1 3

29



Quiz

True or false:
1. The preorder is the reversed postorder.
2. The first node in the preorder is always the root.
3. The first node in the inorder is never the root.
4. Inserting the nodes in preorder into an empty tree leads to the same
tree.

5. Inserting the nodes in postorder into an empty tree leads to the same
tree.

6. Inserting the nodes in inorder into an empty tree leads to the same
tree.

30



Quiz: Solution

True or false:
1. The preorder is the reversed postorder.
False Preorder: 4, 2, 5. Postorder: 2, 5, 4.

4

2 5

2. The first node in the preorder is always the root.
true (by definition!)

3. The first node in the inorder is never the root.
False. When the left subtree is empty, the root is the first node inorder.

31



Quiz: Solution

True or false:
4. Inserting the nodes of a tree in preorder into a new empty tree leads to
the same tree.
True. Since first the root is inserted and then its children, we will get
the same tree.

5. Inserting the nodes in postorder into an empty tree leads to the same
tree.
False. But it is true for the reversed postorder!

6. Inserting the nodes in inorder into an empty tree leads to the same
tree.
False. There are many di�erent trees with the same inorder!

32



Heap

On the following Min-Heap, perform an extract-min operation, including
re-establishing the heap-condition, as shown in class. What does the heap
look like after the operation?

2

5

13

21 42

7

14 8

9

10

11 88

15

33



Solution

5

7

13

21 42

8

14 88

9

10

11

15

34



Quiz: Number of MaxHeaps on n keys

Let N(n) denote the number of distinct Max-Heaps which can be built from
all the keys 1, 2, . . . , n. For example we have
N(1) = 1, N(2) = 1, N(3) = 2, N(4) = 3 und N(5) = 8.
Find the values N(6) and N(7).

4

2

1

3

4

3

1

2

4

3

2

1

35



Number of MaxHeaps on n distinct keys
A MaxHeap containing the elements 1, 2, 3, 4, 5, 6 has the structure:

6

?

? ?

?

?

Number of combinations to choose elements for the left subtree:
1

5
3

2
.

∆ N(6) =
A

5
3

B

· N(3) · N(2) = 10 · 2 · 1 = 20.

and N(7) =
A

6
3

B

· N(3) · N(3) = 20 · 2 · 2 = 80.

36



5.3 2-3 Trees

37



Searching

14 25

7

5 10 12

18 22

16 19 21 23

38

31 40 46

search(23)

æ found

38



Searching

14 25

7

5 10 12

18 22

16 19 21 23

38

31 40 46

search(23)

æ found

38



Searching

14 25

7

5 10 12

18 22

16 19 21 23

38

31 40 46

search(23)

æ found

38



Searching

14 25

7

5 10 12

18 22

16 19 21 23

38

31 40 46

search(23)

æ found

38



Searching

14 25

7

5 10 12

18 22

16 19 21 23

38

31 40 46

search(23)

æ found

38



Searching

14 25

7

5 10 12

18 22

16 19 21 23

38

31 40 46

search(23) æ found

38



2-3 Tree: Insertion

Insert the keys 1, . . . , 7 into an (initially empty) 2-3-tree. Draw the tree after
every step (split/propagate, join, . . . ).

39



2-3 Tree: Insertion

1

insert(1):
new node

1 2

insert(2):
join

1 2 3

insert(3):
4-node

2

1 3

insert(3):
split/propagate

2

1 3 4

insert(4):
join

2

1 3 4 5

insert(5):
4-node

2 4

1 3 5

insert(5):
split/propagate

2 4

1 3 5 6

insert(6):
join

40



2-3 Tree: Insertion

1

insert(1):
new node

1 2

insert(2):
join

1 2 3

insert(3):
4-node

2

1 3

insert(3):
split/propagate

2

1 3 4

insert(4):
join

2

1 3 4 5

insert(5):
4-node

2 4

1 3 5

insert(5):
split/propagate

2 4

1 3 5 6

insert(6):
join

40



2-3 Tree: Insertion

1

insert(1):
new node

1 2

insert(2):
join

1 2 3

insert(3):
4-node

2

1 3

insert(3):
split/propagate

2

1 3 4

insert(4):
join

2

1 3 4 5

insert(5):
4-node

2 4

1 3 5

insert(5):
split/propagate

2 4

1 3 5 6

insert(6):
join

40



2-3 Tree: Insertion

1

insert(1):
new node

1 2

insert(2):
join

1 2 3

insert(3):
4-node

2

1 3

insert(3):
split/propagate

2

1 3 4

insert(4):
join

2

1 3 4 5

insert(5):
4-node

2 4

1 3 5

insert(5):
split/propagate

2 4

1 3 5 6

insert(6):
join

40



2-3 Tree: Insertion

1

insert(1):
new node

1 2

insert(2):
join

1 2 3

insert(3):
4-node

2

1 3

insert(3):
split/propagate

2

1 3 4

insert(4):
join

2

1 3 4 5

insert(5):
4-node

2 4

1 3 5

insert(5):
split/propagate

2 4

1 3 5 6

insert(6):
join

40



2-3 Tree: Insertion

1

insert(1):
new node

1 2

insert(2):
join

1 2 3

insert(3):
4-node

2

1 3

insert(3):
split/propagate

2

1 3 4

insert(4):
join

2

1 3 4 5

insert(5):
4-node

2 4

1 3 5

insert(5):
split/propagate

2 4

1 3 5 6

insert(6):
join

40



2-3 Tree: Insertion

1

insert(1):
new node

1 2

insert(2):
join

1 2 3

insert(3):
4-node

2

1 3

insert(3):
split/propagate

2

1 3 4

insert(4):
join

2

1 3 4 5

insert(5):
4-node

2 4

1 3 5

insert(5):
split/propagate

2 4

1 3 5 6

insert(6):
join

40



2-3 Tree: Insertion

1

insert(1):
new node

1 2

insert(2):
join

1 2 3

insert(3):
4-node

2

1 3

insert(3):
split/propagate

2

1 3 4

insert(4):
join

2

1 3 4 5

insert(5):
4-node

2 4

1 3 5

insert(5):
split/propagate

2 4

1 3 5 6

insert(6):
join

40



2-3 Tree: Insertion

2 4

1 3 5 6 7

insert(7):
4-node

2 4 6

1 3 5 7

insert(7):
split/propagate

4

2

1 3

6

5 7

insert(7):
split/propagate

41



2-3 Tree: Insertion

2 4

1 3 5 6 7

insert(7):
4-node

2 4 6

1 3 5 7

insert(7):
split/propagate

4

2

1 3

6

5 7

insert(7):
split/propagate

41



2-3 Tree: Insertion

2 4

1 3 5 6 7

insert(7):
4-node

2 4 6

1 3 5 7

insert(7):
split/propagate

4

2

1 3

6

5 7

insert(7):
split/propagate

41



2-4 Tree: Deletion

4

2

1 3

6

5 7

Delete key 4 from the resulting tree.

42



2-4 Tree: Deletion

5

2

1 3

6

4 7

1. swap

2 5 6

1 3 4 7

2. create 4-node at
root

2 5

1 3 4 6 7

3. combine with sibling

2 5

1 3 6 7

4. delete key
43



5.4 Red-Black Trees

44



Red-Black Trees

Draw the following 2-3 tree as a red-black tree.

6

2 4

1 3 5

10

7 11 14

∆

6

4

2

1 3

5

10

7 14

11

45



Red-Black Trees

Draw the following 2-3 tree as a red-black tree.

6

2 4

1 3 5

10

7 11 14

∆

6

4

2

1 3

5

10

7 14

11

45



Red-Black Trees: True or False?

1. right spine (path going right from root) has length Álog2(n + 1)Ë.

Correct, since there are no right-leaning red edges and we have perfect
black balance.

2. the number of red edges is at most the number of black edges.
Wrong, a tree with 2 nodes and one edge must have a red edge but not
black edge.

3. All nodes in the left subtree of a node are smaller than the node.
Correct, since a red-black tree is a search tree.

46



Red-Black Trees: True or False?

1. right spine (path going right from root) has length Álog2(n + 1)Ë.
Correct, since there are no right-leaning red edges and we have perfect
black balance.

2. the number of red edges is at most the number of black edges.
Wrong, a tree with 2 nodes and one edge must have a red edge but not
black edge.

3. All nodes in the left subtree of a node are smaller than the node.
Correct, since a red-black tree is a search tree.

46



Red-Black Trees: True or False?

1. right spine (path going right from root) has length Álog2(n + 1)Ë.
Correct, since there are no right-leaning red edges and we have perfect
black balance.

2. the number of red edges is at most the number of black edges.

Wrong, a tree with 2 nodes and one edge must have a red edge but not
black edge.

3. All nodes in the left subtree of a node are smaller than the node.
Correct, since a red-black tree is a search tree.

46



Red-Black Trees: True or False?

1. right spine (path going right from root) has length Álog2(n + 1)Ë.
Correct, since there are no right-leaning red edges and we have perfect
black balance.

2. the number of red edges is at most the number of black edges.
Wrong, a tree with 2 nodes and one edge must have a red edge but not
black edge.

3. All nodes in the left subtree of a node are smaller than the node.
Correct, since a red-black tree is a search tree.

46



Red-Black Trees: True or False?

1. right spine (path going right from root) has length Álog2(n + 1)Ë.
Correct, since there are no right-leaning red edges and we have perfect
black balance.

2. the number of red edges is at most the number of black edges.
Wrong, a tree with 2 nodes and one edge must have a red edge but not
black edge.

3. All nodes in the left subtree of a node are smaller than the node.

Correct, since a red-black tree is a search tree.

46



Red-Black Trees: True or False?

1. right spine (path going right from root) has length Álog2(n + 1)Ë.
Correct, since there are no right-leaning red edges and we have perfect
black balance.

2. the number of red edges is at most the number of black edges.
Wrong, a tree with 2 nodes and one edge must have a red edge but not
black edge.

3. All nodes in the left subtree of a node are smaller than the node.
Correct, since a red-black tree is a search tree.

46



Red-Black Trees: Insertion

Insert the numbers 1, . . . , 7 into an (initially empty) red-black tree and draw
the tree after every step.

Compare your steps with your result for the 2-3 tree before.

47



Red-Black Trees: Insertion

Insert the numbers 1, . . . , 7 into an (initially empty) red-black tree and draw
the tree after every step.
Compare your steps with your result for the 2-3 tree before.

47



Red-Black Trees: Insertion

1

insert(1)

1

2

insert(2): add

2

1

insert(2): rotate_left
(since right child red)

2

1 3

insert(3): add

2

1 3

insert(3): push_up
(two red children)

2

1 3

4

insert(4): add

48



Red-Black Trees: Insertion

1

insert(1)

1

2

insert(2): add

2

1

insert(2): rotate_left
(since right child red)

2

1 3

insert(3): add

2

1 3

insert(3): push_up
(two red children)

2

1 3

4

insert(4): add

48



Red-Black Trees: Insertion

1

insert(1)

1

2

insert(2): add

2

1

insert(2): rotate_left
(since right child red)

2

1 3

insert(3): add

2

1 3

insert(3): push_up
(two red children)

2

1 3

4

insert(4): add

48



Red-Black Trees: Insertion

1

insert(1)

1

2

insert(2): add

2

1

insert(2): rotate_left
(since right child red)

2

1 3

insert(3): add

2

1 3

insert(3): push_up
(two red children)

2

1 3

4

insert(4): add

48



Red-Black Trees: Insertion

1

insert(1)

1

2

insert(2): add

2

1

insert(2): rotate_left
(since right child red)

2

1 3

insert(3): add

2

1 3

insert(3): push_up
(two red children)

2

1 3

4

insert(4): add

48



Red-Black Trees: Insertion

1

insert(1)

1

2

insert(2): add

2

1

insert(2): rotate_left
(since right child red)

2

1 3

insert(3): add

2

1 3

insert(3): push_up
(two red children)

2

1 3

4

insert(4): add 48



Red-Black Trees: Insertion

2

1 4

3

insert(4): rotate_left
(since right child red)

2

1 4

3 5

insert(5): add

49



Red-Black Trees: Insertion

2

1 4

3

insert(4): rotate_left
(since right child red)

2

1 4

3 5

insert(5): add

49



Red-Black Trees: Insertion

2

1 4

3 5

insert(5): push_up
(two children red)

4

2

1 3

5

insert(5): rotate_left
(since right child red)

50



Red-Black Trees: Insertion

2

1 4

3 5

insert(5): push_up
(two children red)

4

2

1 3

5

insert(5): rotate_left
(since right child red)

50



Red-Black Trees: Insertion

4

2

1 3

5

6

insert(6): add

4

2

1 3

6

5

insert(6): rotate_left
(since right child red)

51



Red-Black Trees: Insertion

4

2

1 3

5

6

insert(6): add

4

2

1 3

6

5

insert(6): rotate_left
(since right child red)

51



Red-Black Trees: Insertion

4

2

1 3

6

5 7

insert(7): add

4

2

1 3

6

5 7

insert(7): push_up
(since two children red)

52



Red-Black Trees: Insertion

4

2

1 3

6

5 7

insert(7): add

4

2

1 3

6

5 7

insert(7): push_up
(since two children red)

52



Red-Black Trees: Insertion

4

2

1 3

6

5 7

insert(7): push_up
(since both children red)

53



"But how do I do . . .when . . . ?"

Study the lecture slides
they have answers to and algorithms for every case!

54



"But how do I do . . .when . . . ?"

Study the lecture slides
they have answers to and algorithms for every case!

54



6. Code-Example

55



Code-Example

Exercise class 06: Binary Trees on Code-Expert
Binary Tree: Simple Tasks
Augmenting a Binary Search Tree

56



7. Old Exam Question

57



Heap

58



Heap – Explanation

59



Heap – Solution

60



8. Outro

61



General Questions?

62



See you next time

Have a nice easter break!

63


