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1. Intro
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Intro

May 9th (Thu) is a public holiday
We still want to provide a session for you
Please indicate your availabilities:

when2meet
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2. Follow-up
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Functors, Lambdas and const

Functors, Lambdas and const (slide 24 �. from ES07)

Even though Functors, Lambdas and the keyword const are exam
relevant (and important concepts!) the details of how exactly w.r.t.
const a functor converts the arguments passed through its capture ([])
are not exam relevant
The reason the function that was marked const was able to modify the
referenced (&) unsigned int that was passed through its capture
([&count]), was that it’s a reference to a (and not a "real") variable
The rabbit hole goes even deeper: C++ handles pointers in a very
similar (maybe even same?) way
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Functors, Lambdas and const – Code

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <functional>

// the filter-helper
template <class Functor>
class Not
{
public:

Not(Functor & f) : func(f) {}

template <typename ArgType>
bool operator()(ArgType & arg) {return !func(arg);}

private:
Functor & func;

};

// ...

// ...

// the filter
template<typename T, typename B>
T filter(T list, B pred) {

T ret;
std::remove_copy_if(

list.begin(),
list.end(),
std::back_insert_iterator<T>(ret),
Not<B>(pred)

);

return ret;
}

// ...
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Functors, Lambdas and const – Code

// ...

// the functor
class lambda1 {

unsigned& count;
int min;

public:
lambda1(unsigned& c, int m):

count(c), min(m) {}
bool operator()(int e) const {

++count;
return min <= e;

}
};

// ...

// ...

int main() {

unsigned count = 0;
int min = 3;
std::vector<int> data = {4,-2, 0, 10, 1, 2, 3, 5};
data = filter(data, lambda1(count, min));

for (auto datum : data){
std::cout << datum << " ";

}

return 0;
}
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3. Feedback for code expert
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Task "Closed Hashing"

Recap urgent and important, since only 6/24 people got 3/3!
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Double Hashing (cf. Lecture Notes)

For creating a probing sequence that does neither su�er from primary
clustering nor from secondary clustering, we can use probe using double
hashing. We use two hash functions h(k) and h

Õ(k) and probe along
multiples of h

Õ(k) starting from h(k) , thus1

S(k) = (h(k) + 0h
Õ(k), h(k) + 1h

Õ(k), h(k) + 2h
Õ(k), h(k) + 3h

Õ(k), . . .)
¸ ˚˙ ˝

Probing Sequence (but without the modulo)

mod m

1where j goes from 0 (no collision) to m (the size of the hash table)
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Closed Hashing from code expert

TASK Insert the keys

17, 6, 7, 8, 11, 28, 21, 20

in this order into an initially empty
hash table of size 11. Use open
addressing with the hash function

h(k) = k mod 11

and resolve the conflicts using
double hashing with

hÕ(k) = 1 + (k mod 9)

0 1 2 3 4 5 6 7 8 9 10
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Closed Hashing from code expert (Solution)
TASK Insert the keys

17, 6, 7, 8, 11, 28, 21, 20

in this order into an initially empty
hash table of size 11. Use open
addressing with the hash function

h(k) = k mod 11

and resolve the conflicts using
double hashing with

hÕ(k) = 1 + (k mod 9)

11 6 21 17 7 8 20 28

0 1 2 3 4 5 6 7 8 9 10
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Questions?
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Questions regarding code expert from your side?
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4. Learning Objectives
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Learning Objectives

⇤ Be able to apply simple hashing methods by hand
⇤ Understand how the presented geometric algorithms work
⇤ Understand why the presented geometric algorithms work
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5. Geometric Algorithms
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Overlaps of two intervals

Two intervals (l, r) and (s, e) overlap if

l r

s e

l Æ s < r

l r

es

l < e Æ r

l r

es

or s Æ l Æ r Æ e

∆ We can check in constant time whether two intervals intersect.
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Properties of line segments

Cross-Product of two vectors p1 = (x1, y1),
p2 = (x2, y2) in the plane

p1 ◊ p2 = det
C

x1 x2
y1 y2

D

= x1y2 ≠ x2y1

Signed area of the parallelogram

+

≠

p2

p1

p1 + p2

pÕ
2

p1 + pÕ
2

y

x
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Turning direction

p0

p1

p2

p0

p1

p2

to the left:
(p1 ≠ p0) ◊ (p2 ≠ p0) > 0

to the right:
(p1 ≠ p0) ◊ (p2 ≠ p0) < 0
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Intersection of two line segments
How to figure out whether two segments are intersecting without actually
computing the intersection points (division!)?

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2
p3

p4

Intersection: p1
and p2 opposite
w.r.t p3p4 and p3, p4
opposite w.r.t. p1p2

No intersection: p1
and p2 on the same
side of p3p4

Intersection: p1 on
p3p4No intersection: p3

and p4 on the same
side of p1p2
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Intersection of two line segments
Part (a)

Intersection or no intersection?
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Intersection of two line segments
Part (a)

Intersection or no intersection?

Intersection
p1, p2 are opposite w.r.t p4p3,
and p3, p4 are opposite w.r.t. p1p2.
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Intersection of two line segments
Part (a) (p3 ≠ p4) ◊ (p1 ≠ p4) =

= ((0, 4) ≠ (≠3, ≠5)) ◊ ((≠3, 0) ≠

(≠3, ≠5)) = (3, 9)◊(0, 5) = det
C

3 0
9 5

D

= (3)(5) ≠ (0)(9) = 15 > 0.

(p3 ≠ p4) ◊ (p2 ≠ p4) =
= ((0, 4) ≠ (≠3, ≠5)) ◊ ((0, ≠3) ≠

(≠3, ≠5))
= (3, 9) ◊ (3, 2) = det

C
3 3
9 2

D

= (3)(2) ≠ (3)(9) = ≠21 < 0.
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Intersection of two line segments
Part (a) and (p2 ≠ p1) ◊ (p3 ≠ p1) =

= ((0, ≠3) ≠ (≠3, 0)) ◊ ((0, 4) ≠ (≠3, 0))
= (3, ≠3) ◊ (3, 4) = det

C
3 3

≠3 4

D

= (3)(4) ≠ (3)(≠3) = 21 > 0.

(p2 ≠ p1) ◊ (p4 ≠ p1) =
= ((0, ≠3) ≠ (≠3, 0)) ◊ ((≠3, ≠5) ≠

(≠3, 0))
= (3, ≠3) ◊ (0, ≠5) = det

C
3 0

≠3 ≠5

D

= (3)(≠5) ≠ (0)(≠3) = ≠15 < 0.
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Intersection of two line segments
Part (b)

Intersection or no intersection?
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Intersection of two line segments
Part (b)

Intersection or no intersection?

Intersection
p4 is on p1p2 for two reasons.
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Intersection of two line segments
Part (b)

First,
(p2 ≠ p1) ◊ (p4 ≠ p1) =
= ((4, ≠4) ≠ (≠2, ≠2)) ◊ ((1, ≠3) ≠

(≠2, ≠2))
= (6, ≠2) ◊ (3, ≠1) = det

C
6 3

≠2 ≠1

D

= (6)(≠1) ≠ (3)(≠2) = 0.
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Intersection of two line segments
Part (b)

But this only shows that p4 is in the
line created by p1p2.
To conclude that p4 is in p1p2, note that
≠2 = p1[0] Æ 1 = p4[0] Æ 4 = p2[0]
and
≠4 = p2[1] Æ ≠3 = p4[1] Æ ≠2 = p1[1].
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Intersection of two line segments
Part (c)

Intersection or no intersection?
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Intersection of two line segments
Part (c)

Intersection or no intersection?

No Intersection
p3 and p4 are on the same side of p1p2.
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Intersection of two line segments
Part (c)

(p2 ≠ p1) ◊ (p3 ≠ p1) =
= ((5, 4)≠(≠3, 2))◊((≠3, ≠5)≠(≠3, 2))
= (8, 2) ◊ (0, ≠7) = det

C
8 0
2 ≠7

D

= (8)(≠7) ≠ (0)(2) = ≠56 < 0.

(p2 ≠ p1) ◊ (p4 ≠ p1) =
= ((5, 4) ≠ (≠3, 2)) ◊ ((2, 1) ≠ (≠3, 2))
= (8, 2) ◊ (5, ≠1) = det

C
8 5
2 ≠1

D

= (8)(≠1) ≠ (5)(2) = ≠18 < 0.
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Intersection of two line segments
Part (d)

Intersection or no intersection?
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Intersection of two line segments
Part (d)

Intersection or no intersection?

No Intersection
p1 and p2 are on the same side of p4p3.
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Intersection of two line segments
Part (d) (p3 ≠ p4) ◊ (p1 ≠ p4) =

= ((5, 2)≠(≠5, ≠4))◊((0, 4)≠(≠5, ≠4))
= (10, 6) ◊ (5, 8) = det

C
10 5
6 8

D

= (10)(8) ≠ (5)(6) = 60 > 0.

(p3 ≠ p4) ◊ (p2 ≠ p4) =
= ((5, 2) ≠ (≠5, ≠4)) ◊ ((≠2, ≠1) ≠

(≠5, ≠4))
= (10, 6) ◊ (3, 3) = det

C
10 3
6 3

D

= (10)(3) ≠ (6)(3) = 12 > 0.
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6. Convex hulls

37



Convex Hull
Subset S of a real vector space is called convex, if for all a, b œ S and all
⁄ œ [0, 1]:

⁄a + (1 ≠ ⁄)b œ S

a

b

S
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Convex Hull
Convex Hull H(Q) of a set Q of points: smallest convex polygon P such that
each point of Q is on P or in the interior of P .

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15
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Jarvis Marsch / Gift Wrapping algorithm

1. Start with an extremal point (e.g. lowest point) p = p0

2. Search point q, such that pq is a line to the right of all other points (or
other points are on this line closer to p.

3. Continue with p Ω q at (2) until p = p0.
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Illustration Jarvis

p0

p1

p2

p3 p4

1. Set H æ ÿ.
2. Find the lowest point q.
3. Find the rightmost point p, from

q’s point of view
4. Add p to H .
5. Set q Ω p and repeat from step 3
until q is the lowest point

6. H is the convex hull.
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Graham Scan

Graham Scan: Another algorithm that computes the convex hull
See the implementation in the lecture slides
Time complexity:

Jarvis March: O(h · n) where h is the number of corner points on the convex
hull
Graham Scan: O(n log n)

Question: When does Jarvis March perform better?

Answer: Jarvis March is better when h is small compared to n, as its time
complexity depends on the number of corner points on the convex hull.
Comment: Chan’s algorithm improves on both, but is not taught in this
course.
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7. Sweepline
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Preparation: Overlapping Intervals

i1
i2

i3

i4

i5

i6

i7

Questions:
How many intervals overlap maximally?

Which intervals (don’t) get wet?
Which intervals are directly on top of each other?
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Preparation: Overlapping Intervals

i1
i2

i3

i4

i5

i6

i7

Idea of a sweep line: vertical line, moving in x-direction, observes the
geometric objects.
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Preparation: Overlapping Intervals

i1
i2

i3

i4

i5

i6

i7

Event list: list of points where the state observed by the sweepline changes.
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Preparation: Overlapping Intervals

i1
i2

i3

i4

i5

i6

i7

1 2 3 4 3 4 5 434 3 2 1 0

Q: How many intervals
overlap maximally?

Sweep line controls a
counter that is incre-
mented (decremented)
at the left (right) end
point of an interval.
A: maximum counter
value
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Q: Which intervals get
wet?

Sweep line controls a
binary search tree that
comprises the inter-
vals according to their
vertical ordering.
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Preparation: Overlapping Intervals

i1
i2

i3

i4

i5

i6

i7

i1 i2

i1 i3

i2

i5

i6 i4

i3

i5

i7

i5

Q: Why don’t we use
Max-Heap (instead of
BST)?

A: The deletion of an
arbitrary element (not
the maximum) from a
heap is not easy.
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Preparation: Overlapping Intervals

i1
i2

i3

i4

i5

i6

i7

i2

i1

i4

i3

i4

i5 i7

Q: Which intervals are
neighbours?

A: If one is the symmet-
ric predecessors or an-
cestor of the other in
the tree.
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Preparation: Overlapping Intervals
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Cutting many line segments
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Intersection of line segments

a

b

c

d

e

a b
d
e
c

b
a
c

b
d
a
e
c

b
a
e
c

e
d

ee
d
c◊!
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8. Geometric Divide & Conquer: Closest
Point Pair
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Divide And Conquer: Closest Point Pair

Set of points P , starting with P Ω Q

Arrays X and Y , containing the elements
of P , sorted by x- and y-coordinate,
respectively.
Partition point set into two (approximately)
equally sized sets PL and PR, separated by
a vertical line through a point of P .
Split arrays X and Y accordingly in XL, XR.
YL and YR.
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Divide And Conquer: Closest Point Pair

Recursive call with PL, XL, YL and
PR, XR, YR. Yields minimal distances ”L, ”R.

(If only k Æ 2 points: compute the minimal
distance directly)
After recursive call ” = min(”L, ”R).
Combine (next slides) and return best
result.

56



Divide And Conquer: Closest Point Pair

Recursive call with PL, XL, YL and
PR, XR, YR. Yields minimal distances ”L, ”R.

(If only k Æ 2 points: compute the minimal
distance directly)
After recursive call ” = min(”L, ”R).
Combine (next slides) and return best
result.

56



Divide And Conquer: Closest Point Pair

Recursive call with PL, XL, YL and
PR, XR, YR. Yields minimal distances ”L, ”R.
(If only k Æ 2 points: compute the minimal
distance directly)

After recursive call ” = min(”L, ”R).
Combine (next slides) and return best
result.

56



Divide And Conquer: Closest Point Pair

Recursive call with PL, XL, YL and
PR, XR, YR. Yields minimal distances ”L, ”R.
(If only k Æ 2 points: compute the minimal
distance directly)
After recursive call ” = min(”L, ”R).
Combine (next slides) and return best
result.

56



Minimum Distance across middle line: Observations

Which points are relevant for point p?
∆ the ones in a circle around p with radius ”

Observation 1: The relevant points are con-
tained in two (” ◊ ”)-rectangles.

How many points are in these rectangles?
Observation 2: At most 8.

”

”

”

At most one point per (”/2 ◊ ”/2)-rectangle,

otherwise they have distance
Ô

2 ·
”
2 < ”.

” ”

M

”

p
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Minimum Distance across middle line: Algorithm

sort L and R according to y-coordinates
filter L and R according to band around M

for every remaining point in L, compute
distance to all points in R in the strip with
y-distance Æ ”

∆ at most 8 points

Running time:
Sorting: �(n log n)
Filtering: �(n)
compute the distances: �(n)

∆ �(n log n) per recursion step

” ”

M

L R
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Implementation

Goal: recursion equation (runtime) T (n) = 2 · T (n
2 ) + O(n).

Non-trivial: only arrays Y and Y
Õ

Idea: merge reversed: run through Y that is presorted by y-coordinate.
For each element follow the selection criterion of the x-coordinate and
append the element either to YL or YR. Same procedure for Y

Õ. Runtime
O(|Y |).

Overall runtime: O(n log n).
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Questions

How does the algorithm compare to a brute-force approach?

Divide and conquer reduces the problem size at each step, resulting in a
time complexity of O(n), while a brute-force approach has a time
complexity of O(n2).

Why do we avoid sorting at each step of the recursion?

Sorting is O(n log n) and the time complexity of conquer should be linear.
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Questions?
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9. Old Exam Question
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Traversal
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Traversal – Solution
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10. Outro

65



General Questions?
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See you next time

Have a nice week!
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