ETHzürich

Exercise Session 08 – Geometric Algorithms Data Structures and Algorithms These slides are based on those of the course, but were adapted and extended by the teaching assistant Adel Gavranović

Today's Schedule

Intro Follow-up Feedback for **code** expert Closed Hashing Learning Objectives Geometric Algorithms Convex hulls Sweepline Geometric Divide & Conquer: Closest Point Pair Old Exam Ouestion Outro

n.ethz.ch/~agavranovic

Exercise Session Material

▶ Adel's Webpage

► Mail to Adel

Comic of the Week

1. Intro

Intro

- May 9th (Thu) is a public holiday
- We still want to provide a session for you
- Please indicate your availabilities:

- May 9th (Thu) is a public holiday
- We still want to provide a session for you
- Please indicate your availabilities:

2. Follow-up

Functors, Lambdas and const

Functors, Lambdas and const (slide 24 ff. from ES07)

Functors, Lambdas and const

Functors, Lambdas and const (slide 24 ff. from ES07)

 Even though Functors, Lambdas and the keyword const are exam relevant (and important concepts!) the details of how exactly w.r.t. const a functor converts the arguments passed through its capture ([]) are not exam relevant

Functors, Lambdas and const (slide 24 ff. from ES07)

- Even though Functors, Lambdas and the keyword const are exam relevant (and important concepts!) the details of how exactly w.r.t.
 const a functor converts the arguments passed through its capture ([]) are not exam relevant
- The reason the function that was marked const was able to modify the referenced (&) unsigned int that was passed through its capture ([&count]), was that it's a reference to a (and not a "real") variable

Functors, Lambdas and const (slide 24 ff. from ES07)

- Even though Functors, Lambdas and the keyword const are exam relevant (and important concepts!) the details of how exactly w.r.t.
 const a functor converts the arguments passed through its capture ([]) are not exam relevant
- The reason the function that was marked const was able to modify the referenced (&) unsigned int that was passed through its capture ([&count]), was that it's a reference to a (and not a "real") variable
- The rabbit hole goes even deeper: C++ handles pointers in a very similar (maybe even same?) way

Functors, Lambdas and const – Code

```
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <functional>
```

```
// the filter-helper
template <class Functor>
class Not
{
public:
    Not(Functor & f) : func(f) {}
```

```
template <typename ArgType>
bool operator()(ArgType & arg) {return !func(arg);}
```

private:

```
Functor & func;
};
```

// ...

// ...

```
// the filter
template<typename T, typename B>
T filter(T list, B pred) {
    T ret;
    std::remove_copy_if(
        list.begin(),
        list.end(),
        std::back_insert_iterator<T>(ret),
        Not<B>(pred)
    );
    return ret;
}
// ...
```

Functors, Lambdas and const – Code

// ...

```
// the functor
class lambda1 {
    unsigned& count;
    int min;
public:
    lambda1(unsigned& c, int m):
        count(c), min(m) {}
    bool operator()(int e) const {
        ++count;
        return min <= e;
    }
};
// ...</pre>
```

// ...

```
int main() {
```

```
unsigned count = 0;
int min = 3;
std::vector<int> data = {4,-2, 0, 10, 1, 2, 3, 5};
data = filter(data, lambda1(count, min));
```

```
for (auto datum : data){
   std::cout << datum << " ";
}</pre>
```

```
return 0;
```

}

3. Feedback for code expert

Task "Closed Hashing"

Task "Closed Hashing"

Recap urgent and important, since only 6/24 people got 3/3!

Double Hashing (cf. Lecture Notes)

¹where j goes from 0 (no collision) to m (the size of the hash table)

Double Hashing (cf. Lecture Notes)

For creating a probing sequence that does neither suffer from primary clustering nor from secondary clustering, we can use probe using *double* hashing. We use two hash functions h(k) and h'(k) and probe along *multiples* of h'(k) starting from h(k)

¹where *i* goes from 0 (no collision) to *m* (the size of the hash table)

For creating a probing sequence that does neither suffer from primary clustering nor from secondary clustering, we can use probe using *double* hashing. We use two hash functions h(k) and h'(k) and probe along multiples of h'(k) starting from h(k), thus¹

$$S(k) = (h(k) + \mathbf{0}h'(k), \ h(k) + \mathbf{1}h'(k), \ h(k) + \mathbf{2}h'(k), \ h(k) + \mathbf{3}h'(k), \dots) \mod m$$

Probing Sequence (but without the modulo)

¹where j goes from 0 (no collision) to m (the size of the hash table)

Closed Hashing from code expert

•

TASK Insert the keys

1, 1, 1, 28, 21, 20

in this order into an initially empty hash table of size 11. Use open addressing with the hash function

 $h(k) = k \bmod 11$

and resolve the conflicts using double hashing with

$$h'(k) = 1 + (k \mod 9)$$

$$h(26) = 26 \times 11 = 9$$

(6,8,10)

Closed Hashing from **code** expert (Solution)

TASK Insert the keys

17, 6, 7, 8, 11, 28, 21, 20

in this order into an initially empty hash table of size 11. Use open addressing with the hash function

 $h(k) = k \bmod 11$

and resolve the conflicts using *double hashing* with

 $h'(k) = 1 + (k \bmod 9)$

11		6	21			17	7	8	20	28
0	1	2	\sim	4	5	6	7	8	9	10

Questions?

Questions regarding **code** expert from your side?

4. Learning Objectives

- □ Be able to apply simple *hashing methods* by hand
- □ Understand how the presented *geometric algorithms* work
- □ Understand why the presented *geometric algorithms* work

5. Geometric Algorithms

 \Rightarrow We can check in constant time whether two intervals intersect.

Properties of line segments

Cross-Product of two vectors $p_1 = (x_1, y_1)$, $p_2 = (x_2, y_2)$ in the plane

$$p_1 \times p_2 = \det \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix} = x_1 y_2 - x_2 y_1$$

Signed area of the parallelogram

Turning direction

to the left: $(p_1 - p_0) \times (p_2 - p_0) > 0$ to the right: $(p_1 - p_0) \times (p_2 - p_0) < 0$

Intersection of two line segments

How to figure out whether two segments are intersecting without actually computing the intersection points (division!)?

Intersection of two line segments

How to figure out whether two segments are intersecting without actually computing the intersection points (division!)?

Part (a)

Intersection or no intersection?

Part (a)

Intersection or no intersection?

Intersection

 p_1 , p_2 are opposite w.r.t $\overline{p_4p_3}$, and p_3 , p_4 are opposite w.r.t. $\overline{p_1p_2}$.

Part (a)

$$(p_3 - p_4) \times (p_1 - p_4) = = ((0, 4) - (-3, -5)) \times ((-3, 0) - (-3, -5)) = (3, 9) \times (0, 5) = det \begin{bmatrix} 3 & 0 \\ 9 & 5 \end{bmatrix} = (3)(5) - (0)(9) = 15 > 0.$$

$$(p_3 - p_4) \times (p_2 - p_4) = = ((0, 4) - (-3, -5)) \times ((0, -3) - (-3, -5)) = (3, 9) \times (3, 2) = det \begin{bmatrix} 3 & 3 \\ 9 & 2 \\ 2 & -21 < 0. \end{bmatrix}$$

Part (a)

and
$$(p_2 - p_1) \times (p_3 - p_1) =$$

= $((0, -3) - (-3, 0)) \times ((0, 4) - (-3, 0))$
= $(3, -3) \times (3, 4) = det \begin{bmatrix} 3 & 3 \\ -3 & 4 \end{bmatrix}$
= $(3)(4) - (3)(-3) = \mathbf{21} > \mathbf{0}.$

$$(p_2 - p_1) \times (p_4 - p_1) =$$

= ((0, -3) - (-3, 0)) × ((-3, -5) - (-3, 0))
= (3, -3) × (0, -5) = det \begin{bmatrix} 3 & 0 \\ -3 & -5 \end{bmatrix}
= (3)(-5) - (0)(-3) = -15 < 0.

Part (b)

Intersection or no intersection?

Part (b)

Intersection or no intersection?

Intersection p_4 is on $\overline{p_1p_2}$ for two reasons.

Part (b)

First,

$$(p_2 - p_1) \times (p_4 - p_1) =$$

 $= ((4, -4) - (-2, -2)) \times ((1, -3) - (-2, -2))$
 $= (6, -2) \times (3, -1) = \det \begin{bmatrix} 6 & 3 \\ -2 & -1 \end{bmatrix}$
 $= (6)(-1) - (3)(-2) = \mathbf{0}.$

Part (b)

But this only shows that p_4 is in the line created by $\overline{p_1p_2}$. To conclude that p_4 is in $\overline{p_1p_2}$, note that $-2 = p_1[0] \le 1 = p_4[0] \le 4 = p_2[0]$ and

$$-4 = p_2[1] \le -3 = p_4[1] \le -2 = p_1[1].$$

Part (c)

Intersection or no intersection?

Part (c)

Intersection or no intersection?

No Intersection

 p_3 and p_4 are on the same side of $\overline{p_1p_2}$.

Part (c)

$$(p_2 - p_1) \times (p_3 - p_1) =$$

$$= ((5, 4) - (-3, 2)) \times ((-3, -5) - (-3, 2))$$

$$= (8, 2) \times (0, -7) = \det \begin{bmatrix} 8 & 0 \\ 2 & -7 \end{bmatrix}$$

$$= (8)(-7) - (0)(2) = -56 < 0.$$

$$(p_2 - p_1) \times (p_4 - p_1) =$$

$$= ((5, 4) - (-3, 2)) \times ((2, 1) - (-3, 2))$$

$$= (8, 2) \times (5, -1) = \det \begin{bmatrix} 8 & 5 \\ 2 & -1 \end{bmatrix}$$

$$= (8)(-1) - (5)(2) = -18 < 0.$$

Intersection or no intersection?

Part (d)

Intersection or no intersection?

No Intersection

 p_1 and p_2 are on the same side of $\overline{p_4p_3}$.

Part (d)

$$(p_3 - p_4) \times (p_1 - p_4) =$$

= ((5,2)-(-5,-4))×((0,4)-(-5,-4))
= (10,6) × (5,8) = det $\begin{bmatrix} 10 & 5 \\ 6 & 8 \end{bmatrix}$
= (10)(8) - (5)(6) = **60** > **0**.

$$(p_3 - p_4) \times (p_2 - p_4) =$$

= ((5,2) - (-5,-4)) × ((-2,-1) -
(-5,-4))
= (10,6) × (3,3) = det \begin{bmatrix} 10 & 3 \\ 6 & 3 \end{bmatrix}
= (10)(3) - (6)(3) = **12** > **0**.

Convex Hull

Subset S of a real vector space is called **convex**, if for all $a, b \in S$ and all $\lambda \in [0, 1]$:

 $\lambda a + (1 - \lambda)b \in S$

Convex Hull

Convex Hull H(Q) of a set Q of points: smallest convex polygon P such that each point of Q is on P or in the interior of P.

Convex Hull

Convex Hull H(Q) of a set Q of points: smallest convex polygon P such that each point of Q is on P or in the interior of P.

Jarvis Marsch / Gift Wrapping algorithm

- 1. Start with an extremal point (e.g. lowest point) $p = p_0$
- 2. Search point q, such that \overline{pq} is a line to the right of all other points (or other points are on this line closer to p.
- 3. Continue with $p \leftarrow q$ at (2) until $p = p_0$.

- 1. Set $H \to \emptyset$.
- 2. Find the lowest point q.
- 3. Find the rightmost point *p*, from *q*'s point of view

- 1. Set $H \to \emptyset$.
- 2. Find the lowest point q.
- 3. Find the rightmost point *p*, from *q*'s point of view
- 4. Add p to H.

- 1. Set $H \to \emptyset$.
- 2. Find the lowest point q.
- 3. Find the rightmost point *p*, from *q*'s point of view
- 4. Add p to H.
- 5. Set $q \leftarrow p$ and repeat from step 3 until q is the lowest point

- 1. Set $H \to \emptyset$.
- 2. Find the lowest point q.
- 3. Find the rightmost point *p*, from *q*'s point of view
- 4. Add p to H.
- 5. Set $q \leftarrow p$ and repeat from step 3 until q is the lowest point

- 1. Set $H \to \emptyset$.
- 2. Find the lowest point q.
- 3. Find the rightmost point *p*, from *q*'s point of view
- 4. Add p to H.
- 5. Set $q \leftarrow p$ and repeat from step 3 until q is the lowest point

- 1. Set $H \to \emptyset$.
- 2. Find the lowest point q.
- 3. Find the rightmost point *p*, from *q*'s point of view
- 4. Add p to H.
- 5. Set $q \leftarrow p$ and repeat from step 3 until q is the lowest point

- 1. Set $H \to \emptyset$.
- 2. Find the lowest point q.
- 3. Find the rightmost point *p*, from *q*'s point of view
- 4. Add p to H.
- 5. Set $q \leftarrow p$ and repeat from step 3 until q is the lowest point

- 1. Set $H \to \emptyset$.
- 2. Find the lowest point q.
- 3. Find the rightmost point *p*, from *q*'s point of view
- 4. Add p to H.
- 5. Set $q \leftarrow p$ and repeat from step 3 until q is the lowest point
- 6. H is the convex hull.

Graham Scan

- Graham Scan: Another algorithm that computes the convex hull
- See the implementation in the lecture slides
- Time complexity:
 - Jarvis March: $\mathcal{O}(h \cdot n)$ where h is the number of corner points on the convex hull
 - Graham Scan: $\mathcal{O}(n \log n)$
- **Question**: When does Jarvis March perform better?

Graham Scan

- Graham Scan: Another algorithm that computes the convex hull
- See the implementation in the lecture slides
- Time complexity:
 - Jarvis March: $\mathcal{O}(h \cdot n)$ where *h* is the number of corner points on the convex hull
 - Graham Scan: $\mathcal{O}(n \log n)$
- **Question**: When does Jarvis March perform better?
- **Answer**: Jarvis March is better when *h* is small compared to *n*, as its time complexity depends on the number of corner points on the convex hull.
- Comment: Chan's algorithm improves on both, but is not taught in this course.

7. Sweepline

Questions:

How many intervals overlap maximally?

Questions:

- How many intervals overlap maximally?
- Which intervals (don't) get wet?

- How many intervals overlap maximally?
- Which intervals (don't) get wet?
- Which intervals are directly on top of each other?

Idea of a sweep line: vertical line, moving in *x*-direction, observes the geometric objects.

Event list: list of points where the **state** observed by the sweepline changes.

Q: How many intervals overlap maximally?

Q: How many intervals overlap maximally?

Sweep line controls a counter that is incremented (decremented) at the left (right) end point of an interval.

Q: How many intervals overlap maximally?

Sweep line controls a counter that is incremented (decremented) at the left (right) end point of an interval.

A: maximum counter value

 (e_{n})

Q: Which intervals get wet?

Q: Which intervals get wet?

Sweep line controls a **binary search tree** that comprises the intervals according to their vertical ordering.

Q: Which intervals get wet?

Sweep line controls a **binary search tree** that comprises the intervals according to their vertical ordering.

A: Intervals on the very left of the tree.

Q: Why don't we use Max-Heap (instead of BST)?

Q: Why don't we use Max-Heap (instead of BST)?

A: The deletion of an arbitrary element (not the maximum) from a heap is not easy.

Q: Which intervals are neighbours?

Q: Which intervals are neighbours?

A: If one is the symmetric predecessors or ancestor of the other in the tree.

Cutting many line segments

Intersection of line segments

8. Geometric Divide & Conquer: Closest Point Pair

• Set of points P, starting with $P \leftarrow Q$

- \blacksquare Set of points P, starting with $P \leftarrow Q$
- Arrays X and Y, containing the elements of P, sorted by x- and y-coordinate, respectively.

- Set of points P, starting with $P \leftarrow Q$
- Arrays X and Y, containing the elements of P, sorted by x- and y-coordinate, respectively.
- Partition point set into two (approximately) equally sized sets P_L and P_R , separated by a vertical line through a point of P.

- \blacksquare Set of points P, starting with $P \leftarrow Q$
- Arrays X and Y, containing the elements of P, sorted by x- and y-coordinate, respectively.
- Partition point set into two (approximately) equally sized sets P_L and P_R , separated by a vertical line through a point of P.
- Split arrays X and Y accordingly in X_L , X_R . Y_L and Y_R .

Recursive call with P_L, X_L, Y_L and P_R, X_R, Y_R . Yields minimal distances δ_L, δ_R .

Recursive call with P_L, X_L, Y_L and P_R, X_R, Y_R . Yields minimal distances δ_L, δ_R .

- Recursive call with P_L, X_L, Y_L and P_R, X_R, Y_R . Yields minimal distances δ_L, δ_R .
- (If only $k \leq 2$ points: compute the minimal distance directly)

- Recursive call with P_L, X_L, Y_L and P_R, X_R, Y_R . Yields minimal distances δ_L, δ_R .
- (If only $k \leq 2$ points: compute the minimal distance directly)
- After recursive call $\delta = \min(\delta_L, \delta_R)$. Combine (next slides) and return best result.

Which points are relevant for point p? \Rightarrow the ones in a circle around p with radius δ

Which points are relevant for point p? \Rightarrow the ones in a circle around p with radius δ **Observation 1:** The relevant points are contained in two ($\delta \times \delta$)-rectangles.

Which points are relevant for point p? \Rightarrow the ones in a circle around p with radius δ **Observation 1:** The relevant points are contained in two ($\delta \times \delta$)-rectangles.

Which points are relevant for point p? \Rightarrow the ones in a circle around p with radius δ **Observation 1:** The relevant points are contained in two ($\delta \times \delta$)-rectangles.

How many points are in these rectangles?

Which points are relevant for point p? \Rightarrow the ones in a circle around p with radius δ **Observation 1:** The relevant points are contained in two ($\delta \times \delta$)-rectangles.

How many points are in these rectangles? **Observation 2:** At most 8.

Which points are relevant for point p? \Rightarrow the ones in a circle around p with radius δ **Observation 1:** The relevant points are contained in two ($\delta \times \delta$)-rectangles.

How many points are in these rectangles? **Observation 2:** At most 8.

Which points are relevant for point p? \Rightarrow the ones in a circle around p with radius δ **Observation 1:** The relevant points are contained in two ($\delta \times \delta$)-rectangles.

How many points are in these rectangles? **Observation 2:** At most 8.

Which points are relevant for point p? \Rightarrow the ones in a circle around p with radius δ **Observation 1:** The relevant points are contained in two ($\delta \times \delta$)-rectangles.

How many points are in these rectangles? **Observation 2:** At most 8.

At most one point per $(\delta/2 \times \delta/2)$ -rectangle,

Which points are relevant for point p? \Rightarrow the ones in a circle around p with radius δ **Observation 1:** The relevant points are contained in two ($\delta \times \delta$)-rectangles.

How many points are in these rectangles? **Observation 2:** At most 8.

At most one point per $(\delta/2 \times \delta/2)$ -rectangle, otherwise they have distance $\sqrt{2} \cdot \frac{\delta}{2} < \delta$.

Minimum Distance across middle line: Algorithm

Minimum Distance across middle line: Algorithm

Minimum Distance across middle line: Algorithm

• sort L and R according to y-coordinates

sort L and R according to y-coordinates
filter L and R according to band around M

sort L and R according to y-coordinates
 filter L and R according to band around M
 for every remaining point in L, compute distance to all points in R in the strip with y-distance < δ

Running time:

- sort *L* and *R* according to *y*-coordinates
- \blacksquare filter L and R according to band around M
- for every remaining point in L, compute distance to all points in R in the strip with y-distance $\leq \delta$

Running time:

Sorting: $\Theta(n \log n)$

- sort *L* and *R* according to *y*-coordinates
- \blacksquare filter L and R according to band around M
- for every remaining point in L, compute distance to all points in R in the strip with y-distance ≤ δ
 ⇒ at most 8 points
- Running time:
- Sorting: $\Theta(n \log n)$
- Filtering: $\Theta(n)$

- sort *L* and *R* according to *y*-coordinates
- \blacksquare filter L and R according to band around M
- for every remaining point in *L*, compute distance to all points in *R* in the strip with *y*-distance $\leq \delta$
 - \Rightarrow at most 8 points

Running time:

- Sorting: $\Theta(n \log n)$
- Filtering: $\Theta(n)$
- compute the distances: $\Theta(n)$

- sort *L* and *R* according to *y*-coordinates
- \blacksquare filter L and R according to band around M
- for every remaining point in *L*, compute distance to all points in *R* in the strip with *y*-distance $\leq \delta$
 - \Rightarrow at most 8 points

Running time:

- Sorting: $\Theta(n \log n)$
- Filtering: $\Theta(n)$
- compute the distances: $\Theta(n)$
- $\Rightarrow \Theta(n \log n)$ per recursion step

- Goal: recursion equation (runtime) $T(n) = 2 \cdot T(\frac{n}{2}) + O(n)$.
- Non-trivial: only arrays Y and Y'
- Idea: merge reversed: run through *Y* that is presorted by *y*-coordinate. For each element follow the selection criterion of the *x*-coordinate and append the element either to Y_L or Y_R . Same procedure for *Y'*. Runtime $\mathcal{O}(|Y|)$.

Overall runtime: $\mathcal{O}(n \log n)$.

Questions

■ How does the algorithm compare to a brute-force approach?

- How does the algorithm compare to a brute-force approach?
 - Divide and conquer reduces the problem size at each step, resulting in a time complexity of $\mathcal{O}(n)$, while a brute-force approach has a time complexity of $\mathcal{O}(n^2)$.

- How does the algorithm compare to a brute-force approach?
 - Divide and conquer reduces the problem size at each step, resulting in a time complexity of $\mathcal{O}(n)$, while a brute-force approach has a time complexity of $\mathcal{O}(n^2)$.
- Why do we avoid sorting at each step of the recursion?

- How does the algorithm compare to a brute-force approach?
 - Divide and conquer reduces the problem size at each step, resulting in a time complexity of $\mathcal{O}(n)$, while a brute-force approach has a time complexity of $\mathcal{O}(n^2)$.
- Why do we avoid sorting at each step of the recursion?
 - Sorting is $\mathcal{O}(n \log n)$ and the time complexity of conquer should be linear.

Questions?

9. Old Exam Question

r, v.L, v.R

Die Hauptreihenfolgeausgabe eines binären Suchbaumes sei

Let the pre-order traversal output of a binary search tree be

15, 2, 1, 10, 5, 7, 14, 12.

Finden Sie die Nebenreihenfolge.

Find the post-order traversal.

Nebenreihenfolge / post-order traversal:

Traversal – Solution

Nebenreihenfolge / post-order traversal: 1, 7, 5, 12, 14, 10, 2, 15

General Questions?

Have a nice week!