
Exercise Session 11 – DP and Flow Algos
Data Structures and Algorithms
These slides are based on those of the lecture, but were adapted and
extended by the teaching assistant Adel Gavranović
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1. Intro
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Intro

Often explaining stu� via email is suboptimal
Consider going to the Study Center (especially if it’s related to
exercises!)

Thursdays
08:15 - 10:00
ML H 41.1
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2. Feedback for code expert
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General things regarding code expert

You can submit your partial solutions too!
If you want feedback, please make sure to indicate what part of your
code you want me to have a closer look at or what you think the
problem is
I’m not going to be very responsive in the Lernphase1 so better ask now
Scores for exercises with (pseudo)random stu� can vary. So
occasionally, it makes sense to just re-test the same code

1your boi has his own exams
6
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Questions regarding code expert from your side?
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3. MaxFlow
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Flow
A Flow f : V ◊ V æ fulfills the following
conditions:

Bounded Capacity:
For all u, v œ V : f(u, v) Æ c(u, v).
Skew Symmetry:
For all u, v œ V : f(u, v) = ≠f(v, u).
Conservation of flow:
For all u œ V \ {s, t}:

ÿ

vœV

f(v, u) =
ÿ

vœV

f(u, v).

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

Value of the flow:
|f | = q

vœV f(s, v).
Here |f | = 18.
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Residual Network

Residual network Gf provided by the edges with positive residual capacity:
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Residual networks provide the same kind of properties as flow networks
with the exception of permitting antiparallel edges
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Augmenting Paths

Expansion Path p: simple path from s to t in the residual network Gf .
Residual Capacity cf (p): the least capacity along the expansion path p

cf (p) = min{cf (u, v) : (u, v) edge in p}
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Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V, E, c)
Output: Maximal flow f .

for (u, v) œ E do

f(u, v) Ω 0
while Exists path p : s t in residual network Gf do

cf (p) Ω min{cf (u, v) : (u, v) œ p}

foreach (u, v) œ p do

if (u, v) œ E then

f(u, v) Ω f(u, v) + cf (p)
else

f(v, u) Ω f(u, v) ≠ cf (p)
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Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gf the
expansion path of shortest possible length (e.g. with BFS)

Theorem 1
When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V, E) with source s and sink t then the number of
flow increases applied by the algorithm is in O(|V | · |E|)
∆ Overall asymptotic runtime: O(|V | · |E|

2)
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Max-Flow Min-Cut Theorem

Theorem 2
Let f be a flow in a flow network G = (V, E, c) with source s and sink t.
The following statements are equivalent:
1. f is a maximal flow in G

2. The residual network Gf does not provide any expansion paths
3. It holds that |f | = c(S, T ) for a cut (S, T ) of G.

(Hint: This one is really important)
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Application: maximal bipartite matching
Given: bipartite undirected graph G = (V, E).
Matching M : M ™ E such that |{m œ M : v œ m}| Æ 1 for all v œ V .
Maximal Matching M : Matching M , such that |M | Ø |M Õ

| for each matching
M Õ.

15



Manual Max Flow Exercise
This graph shows a flow chart that is not at maximum capacity. Run one
iteration of the Ford-Fulkerson algorithm to find the max flow.
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Manual Max Flow Solution

update not shown since it is not unique!
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4. Old Exam Questions (Max-Flow)
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Exam Question Example
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Exam Question Example
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Exam Question Example
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Exam Question Example
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Exam Question Example
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Exam Question Example
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Max Flow Question

Let an n ◊ n chessboard be given without some squares. Describe an
e�cient algorithm to find out if the board can be completely covered with
dominoes. Then model the problem as a flow problem.
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5. Dynamic Programming
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Dynamic Programming: Idea

1. Divide a complex problem into a reasonable number of sub-problems;
Partial solutions are combined to more complex ones
= Top-down recursion ("assume the subproblems")

2. Identical problems will be computed only once
= Memoization

- The idea is to simply store the results of subproblems so that we do not
have to re-compute them when needed later.

3. Eliminate recursion
= Bottom-up algorithms ("combine the subproblems")

Optionally, not always possible: Save space by storing as little as possible
in the DP table

22
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Dynamic Programming: Idea
Question: Which of the following Fibonacci implementations would perform
better?

int fib(int n) {
if (n <= 1) {

return n;
}

return fib(n - 1) +
fib(n - 2);

}

int fib2(int n) {
std::vector<int> f(n+1);
f[0] = 0;
f[1] = 1;

for(int i=2;i<=n;++i){
f[i] = f[i-1]+f[i-2];

}

return f[n];
}

int fib3(int n) {
if (n <= 1) {

return n;
}

int a = 0;
int b = 1;
for(int i=2;i<=n;++i){

int a_old = a;
a = b;
b += a_old;

}

return b;
}
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Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by utilizing
the solutions of sub-problems. The problem provides optimal
substructure.
Divide-And-Conquer algorithms (such as Mergesort): sub-problems are
independent; their solutions are required only once in the algorithm.
Dynamic Programming: sub-problems are dependent. The problem is said
to have overlapping sub-problems that are required multiple-times in
the algorithm.
In order to avoid redundant computations, results are tabulated. For
sub-problems there must not be any circular dependencies.
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Memoization vs. Dynamic Programming

Memoization:

Top-down approach
Recursion with caching of results
Lazily computes values on-demand
Can be more e�cient if only a few values are needed

Dynamic Programming:

Iterative bottom-up approach
Builds solutions from smaller subproblems
Computes all values in a predefined order
Can be more e�cient if all values are needed
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Problem Without Optimal Substructure

Question: Problem Without Optimal Substructure?

Example: Longest (simple) path

a

b c

d

ef
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ProblemWithout Optimal Substructure: Longest Path

a

b c

d

ef

Longest path from, e.g. a to e is a, b, c, d, e, i.e. via c
But the longest path from a to c is not a, b, c (and analogously for c to e)

∆ Combining optimal subsolutions does not yield an optimal overall
solution

∆ This problem does not have optimal substructure
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Memoization vs. Dynamic Programming

Question
In which of the following cases might memoization be significantly more
e�cient than dynamic programming?

1. When all values are required for the final result
2. When only a few values are required for the final result
3. When the problem has overlapping subproblems
4. When the problem can be solved iteratively

28



Memoization vs. Dynamic Programming

Answer
Memoization might be significantly more e�cient than dynamic
programming when only a few values are required for the final result
(option 2).
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Dynamic Programming
A complete description of a dynamic program always consists of:

Definition of the subproblems / the DP table:
What are the dimensions of the table? What is the meaning of each entry?
Recursion: Computation of an entry:
How can an entry be computed from the values of other entries? Which
entries do not depend on others?
Computation order (topological order):
In which order can entries be computed so that values needed for each
entry have been determined in previous steps?
Solution and Running Time:
How can the final solution be extracted once the table has been filled?
Running time of the DP algorithm.
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How can the final solution be extracted once the table has been filled?
Running time of the DP algorithm.

30



Dynamic Programming
A complete description of a dynamic program always consists of:
Definition of the subproblems / the DP table:
What are the dimensions of the table? What is the meaning of each entry?
Recursion: Computation of an entry:
How can an entry be computed from the values of other entries? Which
entries do not depend on others?

Computation order (topological order):
In which order can entries be computed so that values needed for each
entry have been determined in previous steps?
Solution and Running Time:
How can the final solution be extracted once the table has been filled?
Running time of the DP algorithm.

30



Dynamic Programming
A complete description of a dynamic program always consists of:
Definition of the subproblems / the DP table:
What are the dimensions of the table? What is the meaning of each entry?
Recursion: Computation of an entry:
How can an entry be computed from the values of other entries? Which
entries do not depend on others?
Computation order (topological order):

In which order can entries be computed so that values needed for each
entry have been determined in previous steps?
Solution and Running Time:
How can the final solution be extracted once the table has been filled?
Running time of the DP algorithm.

30



Dynamic Programming
A complete description of a dynamic program always consists of:
Definition of the subproblems / the DP table:
What are the dimensions of the table? What is the meaning of each entry?
Recursion: Computation of an entry:
How can an entry be computed from the values of other entries? Which
entries do not depend on others?
Computation order (topological order):
In which order can entries be computed so that values needed for each
entry have been determined in previous steps?

Solution and Running Time:
How can the final solution be extracted once the table has been filled?
Running time of the DP algorithm.

30



Dynamic Programming
A complete description of a dynamic program always consists of:
Definition of the subproblems / the DP table:
What are the dimensions of the table? What is the meaning of each entry?
Recursion: Computation of an entry:
How can an entry be computed from the values of other entries? Which
entries do not depend on others?
Computation order (topological order):
In which order can entries be computed so that values needed for each
entry have been determined in previous steps?
Solution and Running Time:

How can the final solution be extracted once the table has been filled?
Running time of the DP algorithm.

30



Dynamic Programming
A complete description of a dynamic program always consists of:
Definition of the subproblems / the DP table:
What are the dimensions of the table? What is the meaning of each entry?
Recursion: Computation of an entry:
How can an entry be computed from the values of other entries? Which
entries do not depend on others?
Computation order (topological order):
In which order can entries be computed so that values needed for each
entry have been determined in previous steps?
Solution and Running Time:
How can the final solution be extracted once the table has been filled?
Running time of the DP algorithm.

30



Review

Choose which characteristics a problem needs to have for a dynamic
programming approach to be appropriate:

Optimal substructure
Real-time problem-solving
Independent sub-problems
Memory-e�cient solution
Recursive structure

Overlapping sub-problems
Circular dependencies
Tabulation or memoization
potential
Small state space
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Answers

Choose which characteristics a problem needs to have for a dynamic
programming approach to be appropriate:

Optimal substructure
Real-time problem-solving
Independent sub-problems
Memory-e�cient solution
Recursive structure

Overlapping sub-problems
Circular dependencies
Tabulation or memoization
potential
Small state space
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Example: Coin Change Problem

Definition
Given a set of coin denominations and a target amount, find the minimum
number of coins needed to make the target amount. Note that the same
coin denomination can be used more than once.

Example
Given coins = [1, 2, 4] and target amount = 8, the solution is 2 (4 + 4).

Remark
When the problem does not have a solution, the algorithm returns -1.
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Coin Change Problem

Task
Design a recursive algorithm to solve the task.
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Coin Change: Recursive Solution

int coinChange(const std::vector<int>& coins, int amount) {
if (amount == 0) {

return 0;
}
int minCoins = INT_MAX;
for (int coin : coins) {

if (amount - coin >= 0) {
int temp = coinChange(coins, amount - coin);
if (temp != -1) {

minCoins = std::min(minCoins, temp + 1);
}

}
}
return minCoins == INT_MAX ? -1 : minCoins;

}
35



Coin Change: Recursive Solution

int coinChange(const std::vector<int>& coins, int amount) {
if (amount == 0) {

return 0;
}
int minCoins = INT_MAX;
for (int coin : coins) {

if (amount - coin >= 0) {
int temp = coinChange(coins, amount - coin);
if (temp != -1) {

minCoins = std::min(minCoins, temp + 1);
}

}
}
return minCoins == INT_MAX ? -1 : minCoins;

}
35



Coin Change Problem

Task
Design a DP algorithm to solve the task.
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Coin Change: Dynamic Programming

We can use dynamic programming to solve this problem by building a
one-dimensional array where dp[i] represents the minimum number of
coins required to make the amount i:

Set each element in dp to a value larger than the maximum possible
number of coins.
Set dp[0] = 0.
For each coin c, iterate through the array and update dp[i] if
dp[i-c]+1 has a lower value.
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Coin Change: DP Solution

int coinChange(const std::vector<int>& coins, int amount) {
std::vector<int> dp(amount + 1, amount + 1);
dp[0] = 0;
for (int coin : coins) {

for (int i = coin; i <= amount; ++i) {
dp[i] = std::min(dp[i], dp[i - coin] + 1);

}
}
return dp[amount] <= amount ? dp[amount] : -1;

}

38



Coin Change: DP Visualisation

dp[i] = std::min(dp[i], dp[i - coin] + 1);

Coins: [1, 2, 4] Target: 8

i 0 1 2 3 4 5 6 7 8
dp[i] 0 Œ Œ Œ Œ Œ Œ Œ Œ

Initial state of the dp array. Note that we use Œ instead of amount+1.
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Coin Change: DP Visualisation

dp[i] = std::min(dp[i], dp[i - coin] + 1);

Coins: [1, 2, 4] Target: 8

i 0 1 2 3 4 5 6 7 8
dp[i] 0 1 2 3 4 5 6 7 8

After processing the first coin.
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Coin Change: DP Visualisation

dp[i] = std::min(dp[i], dp[i - coin] + 1);

Coins: [1, 2, 4] Target: 8

i 0 1 2 3 4 5 6 7 8
dp[i] 0 1 1 2 2 3 3 4 4

After processing the second coin.

39



Coin Change: DP Visualisation

dp[i] = std::min(dp[i], dp[i - coin] + 1);

Coins: [1, 2, 4] Target: 8

i 0 1 2 3 4 5 6 7 8
dp[i] 0 1 1 2 1 2 2 3 2

After processing the third and last coin. Answer: dp[8] = 2.
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Coin Change: Time Complexity

Task
Compare the time complexity of the DP algorithm with that of the naive
recursive algorithm

Naive Algorithm

The naive algorithm has an
exponential time complexity of
O(cn), where c is the number of coin
denominations and n is the target
amount.

Dynamic Programming Algorithm

The dynamic programming algorithm
has a polynomial time complexity of
O(c · n), where c is the number of
coin denominations and n is the
target amount.
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6. Overlap of Convex Polygons
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Overlap of Convex Polygons – Issues

Main issue with most solutions

You sorted the given polygon points
(O(n log n)) instead of using the fact that they
were given in partly sorted order!
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Overlap of Convex Polygons – Solution Sketch

The Event Points are the 2n points of the
convex polygons, sorted by their x-coord
They can be stored in a sorted array by
merging the sequences p1, . . . , pn and
q1, . . . , qn (given in counterclockwise
sorting starting with the left-most point)
Split each sequence into increasing and
decreasing subsequences, then merge
the increasing subsequences and the
reversed decreasing subsequences
Store the polygon info and incident line
segments for each point
This step can be completed in �(n) time!
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7. In-Class Code-Example
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Code-Examples: Memoization and DP

Memoization and DP: Maximum Sum of an Increasing Subsequence
≠æ code expert
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8. Outro
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General Questions?
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See you next time

Have a nice week!
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