
Exercise Session 12 – DP, Greedy Algos
Data Structures and Algorithms
These slides are based on those of the lecture, but were adapted and
extended by the teaching assistant Adel Gavranović
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1. Intro
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Intro

Lots to do; We’re mostly skipping the "Intro"
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2. Follow-up
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Follow-up from last exercise session

Old Max Flow Exam Question
The Max Flow question from last time (that we skipped) was from the
Exam1 of 26.01.2018
It’s solvable via a bipartite matching approach

1 Exam Solution
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3. Learning Objectives
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Learning Objectives

⇤ Gather some intuition on how DP Algorithms look like and work
⇤ Understand greedy approaches and when it’s reasonable to use
⇤ Understand Hu�man Coding and be able to perform it manually
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4. Example: Longest Common Subsequence
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DP Example: Longest Common Subsequence

Definition
A subsequence of a sequence is generated by removing some or none of the
elements of the original sequence. For example, "AC" is a subsequence of
"ABC".

Problem
Given two sequences X and Y, find the length of the longest common
subsequence of X and Y.
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Concrete Problem Instance

Example
X: PROGRAM
Y: ARMOR

Answer?

length 3: ROR
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Subproblems?

String X of length m and string Y of length n:
Which subproblems are there?

if last character matches: +1 and shorten both strings by one letter
shorten X by one, leave Y the same
shorten Y by one, leave X the same
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Recursive Solution

int lcs(const std::string& X, const std::string& Y, int m, int n) {

if (m == 0 || n == 0) {

return 0;

}

if (X[m - 1] == Y[n - 1]) {

return 1 + lcs(X, Y, m - 1, n - 1);

} else {

return std::max(lcs(X, Y, m - 1, n),

lcs(X, Y, m, n - 1));

}

}
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Dynamic Programming

Instead, we can use dynamic programming to solve this problem by building
a table to store the lengths of the longest common subsequences of the
prefixes of X and Y :

Update the table values from the top left to the bottom right.
If the characters at the current position match, set the current cell value
to the diagonal cell value incremented by one, or one if it doesn’t exist.
If they don’t match, set the current cell value to the maximum of the
left and top cell values, or zero if they don’t exist.
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DP Table

X/Y P R O G R A M
A
R
M
O
R
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DP Table
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DP Table

X/Y P R O G R A M
A 0 0 0 0 0 1 1
R 0 1 1 1 1 1 1
M 0 1 1 1 1 1 2
O 0 1 2 2 2 2 2
R 0 1 2 2 3 3 3
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Solution Reconstruction
find LCS (reconstruct solution)?

To find the LCS, trace backwards from the bottom right and mark the
starting letter of each diagonal arrow.

X/Y P R O G R A M
A 0 0 0 0 0 1 1
R 0 1 1 1 1 1 1
M 0 1 1 1 1 1 2
O 0 1 2 2 2 2 2
R 0 1 2 2 3 3 3
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Time Complexity

Question
How does the time complexity of the DP algorithm compare to the naive
recursive algorithm?

Naive (Recursive) Algorithm
The naive algorithm has an
exponential time complexity of
O(2n+m), where n and m are the
lengths of the two sequences.

Dynamic Programming Algorithm
The dynamic programming algorithm
has a polynomial time complexity of
O(n · m).
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5. Example: Palindromes

18



DP Example: Palindromes

A palindrome is a word that reads the same way in either forward or reverse
direction. Example: RACECAR.

Formally: Èa1, . . . , anÍ is a palindrome ≈∆

either n = 1, or
a1 = an and Èa2, . . . , an≠1Í is a palindrome 2

We use an array A[1..n] to store a string of length n. A subarray A[i..j] is
called palindrome in A if it is a palindrome. Examples:

[L, A, R, A] contains palindromes A (2x), R, L and ARA

[A, N, N, A] contains palindromes A (2x), N (2x), NN and ANNA

2for n = 2 we only require a1 = a2
19
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DP Example: Palindromes

Task 1.1: Describe an e�cient dynamic programming algorithm that finds all
pairs (i, j) where A[i] . . . A[j] is a palindrome.

Examples:
[L, A, R, A] ≠æ (1, 1), (2, 2), (3, 3), (4, 4), (2, 4)
[A, N, N, A] ≠æ (1, 1), (2, 2), (3, 3), (4, 4), (2, 3), (1, 4)

Task 1.2: What is the running time of your solution?
Try to find a DP algorithm!
How does the table look like?
How do we traverse the table?
How do we compute an entry?
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Palindromes Task 1.1: Solution

R A C E C A R
R
A -

C - -

E - - -

C - - - -

E - - - - -

R - - - - - -
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Palindromes Task 1.1: Solution
Definition of the DP table: We use an n ◊ n table T with entries that are 0
or 1. For 1 Æ i Æ j Æ n let T [i, j] = 1 ≈∆ ÈA[i], . . . , A[j]Í is a palindrome.

Computation of an entry: We distinguish three cases.

1. 1 Æ i = j Æ n: A[i] is a palindrome of length 1, thus we set
T [i, j] = T [i, i] = 1

2. 1 Æ i Æ n, j = i + 1 Æ n: We consider palindromes of length 2, and set
T [i, i + 1] = 1 ≈∆ A[i] = A[i + 1]

3. 1 Æ i Æ n, i + 1 < j Æ n: Let ÈA[i], . . . , A[j]Í be the considered sequence.
By definition it is a palindrome if A[i] = A[j] and additionally,
ÈA[i + 1], . . . , A[j ≠ 1]Í is a palindrome. Thus we set

T [i, j] = 1 ≈∆ A[i] = A[j] and T [i + 1, j ≠ 1] = 1

22
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Palindromes Task 1.1: Solution
Example: A = RACECER is not a palindrome, but contains non-trivial
palindromes CEC and ECE.

R A C E C E R
R
A -

C - -

E - - -

C - - - -

E - - - - -

R - - - - - -
23
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Palindromes: Solution

Task 1.2: What is the running time of the algorithm?

The table has n2 entries. We must e�ecively fill n(n+1)
2 œ �(n2) of these.

Each table entry can be computed in time O(1).
Hence, filling the table is done in O(n2) steps.

Task 2.1: Describe how a longest palindrome in A can be extracted from the
DP table constructed before.
Traverse table in opposite order of filling, starting from the entry T [1, n]. If
T [i, j] = 1, then A[i] . . . A[j] is a palindrome. The first such entry found is a
longest palindrome.
Task 2.2: What is the running time of the reconstruction?
Same as before: O(n2).
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6. Recap: Greedy Choice
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Recap: Greedy Choice

A problem with a recursive solution can be solved with a greedy algorithm
if it has the following properties:

The problem has optimal substructure: the solution of a problem can be
constructed with a combination of solutions of sub-problems.
The problem has the greedy choice property: The solution to a problem
can be constructed, by using a local property that does not depend on
the solution of the sub-problems.

Examples: Fractional knapsack problem, Hu�man coding
Counterexamples: Knapsack problem, optimal binary search tree.
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7. Example: Activity Selection
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Activity Selection

Coordination of activities that use a common resource exclusively. Activities
S = {a1, a2, . . . , an} with start- and finishing times 0 Æ si Æ fi < Œ, sorted
in ascending order by finishing times.

a1 = (1, 4)
a2 = (3, 5)

a3 = (0, 6)
a4 = (5, 7)

a5 = (3, 9)
a6 = (5, 9)

a7 = (6, 9)
a8 = (8, 11)
a9 = (8, 12)

a10 = (2, 14)
a11 = (12, 16)

Activity Selection Problem: Find a maximal subset (maximum number of
elements) of compatible (non-intersecting) activities.
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Dynamic Programming Approach?

Let Sij = {ak : fi Æ sk · fk Æ sj}.

Let Aij be a maximal subset of compatible activities from Sij .
Let ak œ Aij and Aik = Sik fl Aij , Akj = Skj fl Aij , thus Aij = Aik + {ak} + Akj .

Aik ak Akj

fi
sj

Aik and Akj must be maximal, otherwise Aij = Aik + {ak} + Akj would not
be maximal – obviously?
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Dynamic Programming Approach?

Why must Aik and Akj be maximal subsets of compatible activities for
Aij to be maximal as well?

The reason is that if either Aik or Akj were not maximal, there would exist
additional compatible activities that could be added to these subsets.
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Dynamic Programming Approach?

Let cij = |Aij|.
Then the following recursion holds

cij =
Y
]

[
0 falls Sij = ÿ,

maxakœSij {cik + ckj + 1} falls Sij ”= ÿ.

∆ Dynamic programming.

But there is a simpler alternative.
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Greedy

Intuition: Choose the activity that provides the earliest end time (a1). That
leaves maximal space for other activities.

Remaining problem: Activities that start after a1 ends. (There are no
activites that can end before a1 starts.)
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Greedy

Theorem 1
Given: The set of subproblem Sk, and an activity am from Sk with the
earliest end time. Then am is contained in amaximal subset of compatible
activities from Sk.

Let Ak be a maximal subset with compatible activities from Sk , and aj be an activity from
Ak with the earliest end time. If aj = am ∆ done. If aj ”= am, then consider
AÕ

k = Ak ≠ {aj} fi {am}. AÕ
k consists of compatible activities and is also maximal because

|AÕ
k| = |Ak|.

⌅
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Algorithm RecursiveActivitySelect(s, f, k, n)
Input: Sequence of start and end points (si, fi), 1 Æ i Æ n, si < fi, fi Æ fi+1

for all i. 1 Æ k Æ n
Output: Set of all compatible activitivies.

m Ω k + 1
while m Æ n and sm Æ fk do

m Ω m + 1
if m Æ n then

return {am} fi RecursiveActivitySelect(s, f, m, n)
else

return ÿ
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Algorithm IterativeActivitySelect(s, f, n)

Input: Sequence of start and end points (si, fi), 1 Æ i Æ n, si < fi, fi Æ fi+1
for all i.

Output: Maximal set of compatible activities.

A Ω {a1}

k Ω 1
for m Ω 2 to n do

if sm Ø fk then

A Ω A fi {am}

k Ω m

return A

Runtime of both algorithms:

�(n)
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Class Problem
Consider the following set of activities with their respective start and finish
times:

Activity Start Time Finish Time
A 0 4
B 5 6
C 0 2
D 3 7
E 8 9
F 5 9

Exercise: Find the maximal set of compatible activities that can be
scheduled using the greedy algorithm for activity selection.
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Solution: Greedy Algorithm
1. Sort activities based on finish times:

C æ A æ B æ D æ E æ F

2. Initialize the list of selected activities:
Selected = {C}

3. Iterate through the remaining activities:
A is not compatible with C (skip A)
B is compatible with C =∆ Selected = {C, B}
· · ·

4. The maximal set of compatible activities is:
Selected = {C, B, E}
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8. Recursive Problem-Solving Strategies
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Recursive Problem-Solving Strategies

Brute Force
Enumeration

Backtracking Divide and
Conquer

Dynamic
Programming

Greedy

Recursive Enu-
merability

Constraint Satis-
faction, Partial
Validation

Optimal
Substructure

Optimal
Substructure,
Overlapping
Subproblems

Optimal
Substructure,
Greedy Choice
Property

DFS, BFS, all Per-
mutations, Tree
Traversal

n-Queen,
Sudoku,
m-Coloring,
SAT-Solving,
naive TSP

Binary Search,
Mergesort,
Quicksort,
Hanoi Towers,
FFT

Bellman Ford,
Warshall, Rod-
Cutting, LAS,
Editing Distance,
Knapsack Prob-
lem DP

Dijkstra, Kruskal,
Hu�mann Cod-
ing
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9. Hu�man Coding
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Hu�man’s Idea

Tree construction bottom up
Start with the set C of code
words

Replace iteriatively the two
nodes with smallest
frequency by a new parent
node.

a:45 b:13 c:12 d:16 e:9 f:5

1425
30

55

100
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Algorithm Hu�man(C)

Input: code words c œ C
Output: Root of an optimal code tree

n Ω |C|

Q Ω C
for i = 1 to n ≠ 1 do

allocate a new node z
z.left Ω ExtractMin(Q) // extract word with minimal frequency.
z.right Ω ExtractMin(Q)
z.freq Ω z.left.freq + z.right.freq
Insert(Q, z)

return ExtractMin(Q)
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10. In-Class-Exercise (practical)

Complement the DP implementation to compute an
optimal search tree. ≠æ CodeExpert
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11. Hints for current tasks

Hu�man Coding
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Hu�man: Frequencies

Use std::unordered_map (#include <unordered_map>)
std::unordered_map<char, int> frequencies;

// ...

++frequencies[�a�];

++frequencies[�x�];

++frequencies[�a�];

// A map is a container of key-value pairs (std::pair).

// Output all entries:

for (auto x:observations){

std::cout << "observations of " << x.first << ":" << x.second << �\n�;

}

45



Hu�man: Min Heap
Use std::priority_queue (#include <queue>)
struct MyClass {

int x;

MyClass(int X): x{X} {}

};

struct compare {

bool operator() (const MyClass& a, const MyClass& b) const {

return a.x < b.x;

}

};

std::priority_queue<MyClass, std::vector<MyClass>, compare> q;

q.push(MyClass(10));
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Hu�man: Shared Pointers [optional]
Shared Pointers std::shared_ptr (#include <memory>)
struct SNode {

int value;
std::shared_ptr<SNode> left;
std::shared_ptr<SNode> right;
SNode(int v): value{v}, left{nullptr}, right{nullptr} {}

};

// A graph in which node 7 is shared: // 0
SNode* root = new SNode(0); // / \
root->left = new SNode(1); // 1 2
root->right = new SNode(2); // / \
root->right->left = new SNode(7); // \ /
root->right->right = root->right->left; // 7

root->left = nullptr; // Node 1 can and should be deallocated (deleted) now
root->right->left = nullptr; // Node 7 must not yet be deallocated
root->right->right = nullptr; // Node 7 can and should be deallocated now

Automated memory management, see Code Expert example 47



Hu�man: Tree Nodes

using SharedNode = std::shared_ptr<Node>;

struct Node {
char value;
int frequency;
SharedNode left;
SharedNode right;

// constructor for leafs
Node(char v, int f):

value{v}, frequency{f}, left{nullptr}, right{nullptr}
{}

// constructor for inner nodes
Node(SharedNode l, SharedNode r):

value{0}, frequency{l->frequency + r->frequency}, left{l}, right{r}
{}

};

48



Hu�man
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Hu�man – Solution
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12. Outro
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General Questions?
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See you next time

Have a nice week!
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