
Exercise Session 14 – Concurrency
Data Structures and Algorithms
These slides are based on those of the lecture, but were adapted and
extended by the teaching assistant Adel Gavranović



Today’s Schedule

Intro
Follow-up
Feedback for code expert
Learning Objectives
Repetition theory (concurrent pro-
gramming)
In-Class Code-Example
Information about Exam
Outro

n.ethz.ch/~agavranovic

Exercise Session Material

Adel’s Webpage

Mail to Adel

1

https://n.ethz.ch/~agavranovic/download/Datastructures-and-Algorithms-FS2024/
https://n.ethz.ch/~agavranovic
mailto:adel.gavranovic@inf.ethz.ch


Comic of the Week

xkcd 2

https://xkcd.com


1. Intro

3



Intro

Some unanswered e-mail
Some code expert exercises still not corrected
Most of this I’ll finish over the weekend

4



2. Follow-up

5



Follow-up from last exercise sessions

What is the “Greedy Choice Property” exactly?
No further explanation in the lecture notes. . .
“We can assemble a globally optimal solution by making locally optimal
(greedy) choices.” (Chapter 16: Greedy Algorithms, Cormen et al.)

ES12::Slide16::Solution Reconstruction
Alternative method would not yield all solutions

Exercise “Applying Maximum Flow”
Make sure you understand this. It comes up often enough in very
similar forms
I was very strict with grading on this one (but all that tried got the XP)

6



3. Feedback for code expert

7



General things regarding code expert

Did you go over and understand the “Applying Maximum Flow” exercise
solution? (The garbage truck one)

8



Questions regarding code expert from your side?

9



4. Learning Objectives

10



Learning Objectives

□ Understand what

Race Conditions
Bad Interleavings
and Data Races

are and how to curb their ill effects

11



5. Repetition theory (concurrent
programming)

12



Terminology

Race Condition
Occurs, if the observable behavior of a program depends on the sequence

of events in the computer system that cannot be (directly) controlled (such
as thread scheduling).

Bad Interleavings
Particular interleaving that leads to undesired results.

Data Race
Concurrent R/W or W/W access to shared memory by multiple threads,

which is a bug.

13



Counter Problem

std::vector<std::thread> tv(10);
int counter = 0;

for (auto& t : tv)
t = std::thread([&] {

for (int i = 0; i < 100000; ++i) { counter++; } // data race
});

for (auto& t : tv)
t.join();

std::cout << "counter = " << counter << '\n';

14



Counter Solution 1

std::vector<std::thread> tv(10);
std::mutex lock;
int counter = 0;

for (auto& t : tv)
t = std::thread([&] {

for (int i = 0; i < 100000; ++i) {
mutex.lock(); counter++; mutex.unlock(); // synchronized

}
});

for (auto& t : tv)
t.join();

std::cout << "counter = " << counter << '\n'; 15



Counter Solution 2
Note: Atomic datatypes will be introduced briefly in week 14.

std::vector<std::thread> tv(10);
std::atomic<int> counter = 0; // atomic integer

for (auto& t : tv)
t = std::thread([&] {

for (int i = 0; i < 100000; ++i) { counter++; } // atomic increment
});

for (auto& t : tv)
t.join();

std::cout << "counter = " << counter << '\n';

16



Quiz: What’s wrong with this code?

void exchangeSecret(Person& a, Person& b) {
a.getMutex()->lock();
b.getMutex()->lock();

Secret s = a.getSecret();
b.setSecret(s);

a.getMutex()->unlock();
b.getMutex()->unlock()

}

17



Deadlock

Thread 1:
exchangeSecret(p1, p2);

Thread 2:
exchangeSecret(p2, p1);

How to resolve?

18



Possible Solution

void exchangeSecret(Person& a, Person& b) {
// order
std::mutex* first; std::mutex* second;
if (a.name < b.name)

first = a.getMutex(); second = b.getMutex();
else

first = b.getMutex(); second = a.getMutex();

first->lock(); second->lock(); // lock

Secret s = a.getSecret();
b.setSecret(s);

first->unlock(); second->unlock(); // unlock
}

19



Deadlocks and Races

Not easy to spot
Hard to debug
Might happen only very rarely
Testing is usually not good enough
Reasoning about code is required

Lesson learned: Need to be very careful when programming with locks!

20



Quiz

void print(char c); // output c
std::mutex m1, m2;
char value;

void B() {
m1.lock(); m2.lock();
print(value++);
m2.unlock(); m1.unlock();

}
void A() {

m2.lock(); m1.lock();
print(value++);
m1.unlock(); m2.unlock();

}

int main() {
value = 'A';
print(value++);
std::thread t1(A);
std::thread t2(B);
t1.join();
t2.join();

}

possible output(s)?

ABC
A, and the program won’t
terminate!

21



Condition Variables

Condition variables

Condition variables allow a thread to wait efficiently on a specific condition.
Once the condition has changed (or could have been changed), the
changing thread notifies the waiting one(s).

22



Condition Variables

class Buffer { // Recall Buffer class from the lecture
...
public:

void put(int x) {
guard g(m);
buf.push(x);
cond.notify_one();

}
int get() {

guard g(m);
cond.wait(g, [&]{return !buf.empty();});
int x = buf.front(); buf.pop();
return x;

}
}; 23



Condition Variables

class Buffer {
...
public:

void put(int x) {
guard g(m);
cond.notify_one();
buf.push(x);

}
int get() {

guard g(m);
cond.wait(g, [&]{return !buf.empty();});
int x = buf.front(); buf.pop();
return x;

}
};

Is this correct as well?

24



Answer

Here it is irrelevant where the signalling is executed.
The signalling effect takes place, when the thread leaves the critical
section, i.e. when the guard is dropped.

25



6. In-Class Code-Example

The Bridge −→ code expert

26

https://expert.ethz.ch/ide2/Y8RpidWZfduAq2WYJ
https://expert.ethz.ch/ide2/Y8RpidWZfduAq2WYJ
https://expert.ethz.ch/ide2/Y8RpidWZfduAq2WYJ


7. Information about Exam

Exam on 13.8.2024, 09:30h

27



Relevant for the exam
Material for the exam comprises

Course content (lectures, lecture notes)

Exercises content (coding and text exercises, exercise sessions)

Written exam (150 min)

Examination aids: four A4 pages (both sides printable)

No constraints regarding content and layout

text,
images,
single/double page,
margins,
font size,
etc.

The exam will take place at the computer (Moodle and CodeExpert)

28



Old Exams

Exam Collection

first solve, then check the solution!

29

https://lec.inf.ethz.ch/past_exams/


Structure

Roughly like this

Question 1 2 3 4 5 6 Total
Points 20 10 15 15 20 20 100
Score

around 4 Theory tasks (around 70 points):

[1] short tasks
[2] asymptotics and recurrence equations
[3, 4] 2 bigger tasks

[5, 6] 2 CodeExpert tasks (around 40 points)

30



Personal Tips for Exam Prep

Write a personal cheat sheet1 to take to the exam
Practice coding (quickly) in an exam-like setting (i.e. same keyboard
layout, on code expert )
Solve old exams and then have a look at their solution
Save the entirety of the lecture slides in a single PDF and cmd+F/ctrl+F
through it if you’re looking for something
Make use of the lecture document
Make use of the coding examples
Consider going to a PVK
Try not to go insane. . .

1up to 8 pages on up to 4 sheets. Code snippets and drawings are allowed!
31



8. Outro

32



General Questions?

33



Goodbye and. . .

. . .good luck with your exams!

34


	Intro
	Follow-up
	Feedback for codeexpertcolorcodeexpertcolorcode expert 
	Learning Objectives
	Repetition theory (concurrent programming)
	In-Class Code-Example
	Information about Exam
	Outro

