Red-Black Tree Example

Every red-black tree is also a search tree. Red-black trees also have the following properties, which enable us to achieve a better runtime for some operations:

- red edges go from node to its left child ("left-leaning")
- there are no nodes with two red edges
- each path from root to leaf has the same number of black edges ("perfectly black balanced")

The basic idea of operations on red-black trees is to restore the above-mentioned properties after the operation by means of rotatins, color changes, push-ups and push-ups. When to use which operation is outlined in the lecture slides¹ and lecture document²

¹(https://lec.inf.ethz.ch/DA/2024/slides/daLecture10.en.pdf)

²(https://lec.inf.ethz.ch/DA/2024/lecture_notes/dsaln10.pdf)

Beispiel "Insertion into Red Black Tree"

Insert the numbers $1, \ldots, 7$ one after the other into an (initially empty) red-black tree and draw the tree after each step.

##