
Exercise Session W04
Computer Science (CSE) – AS 23

 



Overview

Today’s Agenda
Elephant in the Room
Follow-up
Feedback on code expert
Expressions
Loops
Calculating Sums
Tips for code expert
Outro

rwko.ch/lily

1



1. Elephant in the Room

2



Where’s Adel?

Adel’s stuck in Amsterdam

will, Deutsche Bahn permitting,
be on a train home by now
Groetjes uit Amsterdam!

3



Where’s Adel?

Adel’s stuck in Amsterdam
will, Deutsche Bahn permitting,
be on a train home by now

Groetjes uit Amsterdam!

3



Where’s Adel?

Adel’s stuck in Amsterdam
will, Deutsche Bahn permitting,
be on a train home by now
Groetjes uit Amsterdam!

3



2. Follow-up

4



Follow-up from last exercise session

Pretty clear vote: This exercise session is now taught in English!
Yay democracy!

22 Votes, of which. . .
I . . .40% agreed to the switch to English

I . . .60% didn’t care

Pardon the many typos to come
You can still send mails and ask questions in (Swiss) German

5



Follow-up from last exercise session

Pretty clear vote: This exercise session is now taught in English!
Yay democracy!

22 Votes, of which. . .
I . . .40% agreed to the switch to English
I . . .60% didn’t care

Pardon the many typos to come
You can still send mails and ask questions in (Swiss) German

5



Follow-up from last exercise session

Pretty clear vote: This exercise session is now taught in English!
Yay democracy!

22 Votes, of which. . .
I . . .40% agreed to the switch to English
I . . .60% didn’t care

Pardon the many typos to come

You can still send mails and ask questions in (Swiss) German

5



Follow-up from last exercise session

Pretty clear vote: This exercise session is now taught in English!
Yay democracy!

22 Votes, of which. . .
I . . .40% agreed to the switch to English
I . . .60% didn’t care

Pardon the many typos to come
You can still send mails and ask questions in (Swiss) German

5



3. Feedback on code expert

6



General things regarding code expert

All the text based tasks should be marked by now1

Questions regarding material/task æ Mail to TA
Questions regarding corrections æ Mail to TA
Bugs in code expert æ Mail to Head TA

Programming tasks still outstanding

1If you’re enrolled in my group on code expert
7



General things regarding code expert

All the text based tasks should be marked by now1

Questions regarding material/task æ Mail to TA
Questions regarding corrections æ Mail to TA
Bugs in code expert æ Mail to Head TA

Programming tasks still outstanding

1If you’re enrolled in my group on code expert
7



Objectives

⇤ Be able to evaluate complex expressions (involving arithmetic and
booleans)

⇤ Be able to implement and use sums in C++
⇤ Be familiar with all kinds of loops (for, while, do-while) and be able to
trace them

⇤ Be able to replace each kind of loop with any other

8



Comments regarding code expert

Please be aware that your code is going to be read by other people, in
particular TAs, and that you should strive to make your code legible and
comprehensible.

// even small comments

// can make a big difference

9



Comments regarding code expert

Formatting and Structure
Use empty lines to separate blocks of code
Use tabs/spaces to put similar blocks onto the same height
Don’t write further than the small gray line on the right

Comments
Document your code (in particular if math or tricks are used)
Put questions/thoughts/approaches at the very top as a comment
German or English are fine

Task Description/Autograder
Corrections fairly strict (in the beginning) regarding not following the
task description

10



Comments regarding code expert
Formatting and Structure

Use empty lines to separate blocks of code

Use tabs/spaces to put similar blocks onto the same height
Don’t write further than the small gray line on the right

Comments
Document your code (in particular if math or tricks are used)
Put questions/thoughts/approaches at the very top as a comment
German or English are fine

Task Description/Autograder
Corrections fairly strict (in the beginning) regarding not following the
task description

10



Comments regarding code expert
Formatting and Structure

Use empty lines to separate blocks of code
Use tabs/spaces to put similar blocks onto the same height

Don’t write further than the small gray line on the right
Comments

Document your code (in particular if math or tricks are used)
Put questions/thoughts/approaches at the very top as a comment
German or English are fine

Task Description/Autograder
Corrections fairly strict (in the beginning) regarding not following the
task description

10



Comments regarding code expert
Formatting and Structure

Use empty lines to separate blocks of code
Use tabs/spaces to put similar blocks onto the same height
Don’t write further than the small gray line on the right

Comments
Document your code (in particular if math or tricks are used)
Put questions/thoughts/approaches at the very top as a comment
German or English are fine

Task Description/Autograder
Corrections fairly strict (in the beginning) regarding not following the
task description

10



Comments regarding code expert
Formatting and Structure

Use empty lines to separate blocks of code
Use tabs/spaces to put similar blocks onto the same height
Don’t write further than the small gray line on the right

Comments
Document your code (in particular if math or tricks are used)

Put questions/thoughts/approaches at the very top as a comment
German or English are fine

Task Description/Autograder
Corrections fairly strict (in the beginning) regarding not following the
task description

10



Comments regarding code expert
Formatting and Structure

Use empty lines to separate blocks of code
Use tabs/spaces to put similar blocks onto the same height
Don’t write further than the small gray line on the right

Comments
Document your code (in particular if math or tricks are used)
Put questions/thoughts/approaches at the very top as a comment

German or English are fine
Task Description/Autograder

Corrections fairly strict (in the beginning) regarding not following the
task description

10



Comments regarding code expert
Formatting and Structure

Use empty lines to separate blocks of code
Use tabs/spaces to put similar blocks onto the same height
Don’t write further than the small gray line on the right

Comments
Document your code (in particular if math or tricks are used)
Put questions/thoughts/approaches at the very top as a comment
German or English are fine

Task Description/Autograder
Corrections fairly strict (in the beginning) regarding not following the
task description

10



Comments regarding code expert
Formatting and Structure

Use empty lines to separate blocks of code
Use tabs/spaces to put similar blocks onto the same height
Don’t write further than the small gray line on the right

Comments
Document your code (in particular if math or tricks are used)
Put questions/thoughts/approaches at the very top as a comment
German or English are fine

Task Description/Autograder
Corrections fairly strict (in the beginning) regarding not following the
task description

10



Comments regarding code expert

E2:T1 Expressions
Valid expressions don’t necessarily need to be saved anywhere

11



Questions regarding code expert ?

12



4. Expressions

13



Types

Types covered so far

logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do di�erent types interact?
Generality order of types
bool < int < unsigned int < float < double
Types always convert to the more general type in an expression

14



Types

Types covered so far
logic variables: bool {false, true}

integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do di�erent types interact?
Generality order of types
bool < int < unsigned int < float < double
Types always convert to the more general type in an expression

14



Types

Types covered so far
logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}

floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do di�erent types interact?
Generality order of types
bool < int < unsigned int < float < double
Types always convert to the more general type in an expression

14



Types

Types covered so far
logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do di�erent types interact?
Generality order of types
bool < int < unsigned int < float < double
Types always convert to the more general type in an expression

14



Types

Types covered so far
logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do di�erent types interact?

Generality order of types
bool < int < unsigned int < float < double
Types always convert to the more general type in an expression

14



Types

Types covered so far
logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do di�erent types interact?
Generality order of types

bool < int < unsigned int < float < double
Types always convert to the more general type in an expression

14



Types

Types covered so far
logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do di�erent types interact?
Generality order of types
bool <

int < unsigned int < float < double
Types always convert to the more general type in an expression

14



Types

Types covered so far
logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do di�erent types interact?
Generality order of types
bool < int < unsigned int <

float < double
Types always convert to the more general type in an expression

14



Types

Types covered so far
logic variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes, multiple types are present in the same expression.
How do di�erent types interact?
Generality order of types
bool < int < unsigned int < float < double
Types always convert to the more general type in an expression

14



Mental model of types

Type (literal) Approximates

bool B = {false, true}
unsigned int (u) N
int Z
float (f) R
double R, but double precision

15



Mental model of types

Type (literal) Approximates
bool B = {false, true}

unsigned int (u) N
int Z
float (f) R
double R, but double precision

15



Mental model of types

Type (literal) Approximates
bool B = {false, true}
unsigned int (u) N

int Z
float (f) R
double R, but double precision

15



Mental model of types

Type (literal) Approximates
bool B = {false, true}
unsigned int (u) N
int Z

float (f) R
double R, but double precision

15



Mental model of types

Type (literal) Approximates
bool B = {false, true}
unsigned int (u) N
int Z
float (f) R

double R, but double precision

15



Mental model of types

Type (literal) Approximates
bool B = {false, true}
unsigned int (u) N
int Z
float (f) R
double R, but double precision

15



Evaluating Types I

std::cout << 5.0/2 << std::endl;

// what type and value will this return and why?

Solution
double, 2.5, since the int 2 gets turned into a double 2.0 first in order to
calculate this expression.

16



Evaluating Types I

std::cout << 5.0/2 << std::endl;

// what type and value will this return and why?

Solution
double, 2.5, since the int 2 gets turned into a double 2.0 first in order to
calculate this expression.

16



Evaluating Types II

std::cout << (1/2)*5.0/2 << std::endl;

// what type and value will this return and why?

Solution
double, 0 because the left expression 1/2 gets evaluated first, which
evaluates to 0, since it’s an integer division. The rest is trivial, since
0*anything evaluates to 0. That 0 will be of type double.

17



Evaluating Types II

std::cout << (1/2)*5.0/2 << std::endl;

// what type and value will this return and why?

Solution
double, 0 because the left expression 1/2 gets evaluated first, which
evaluates to 0, since it’s an integer division. The rest is trivial, since
0*anything evaluates to 0. That 0 will be of type double.

17



Literals

There are certain letters which are assigned certain meanings regarding
types. If you want to tell the compiler “Hey, don’t treat this 2.0 as a double,
but instead as a float” you have to put an f at the end of the value. Like
this:

std::cout << (5/2)*5.0f/2 << std::endl;

18



Literals

There are certain letters which are assigned certain meanings regarding
types. If you want to tell the compiler “Hey, don’t treat this 2.0 as a double,
but instead as a float” you have to put an f at the end of the value. Like
this:

std::cout << (5/2)*5.0f/2 << std::endl;

18



Literals

There are certain letters which are assigned certain meanings regarding
types. If you want to tell the compiler “Hey, don’t treat this 2.0 as a double,
but instead as a float” you have to put an f at the end of the value. Like
this:

std::cout << (5/2)*5.0f/2 << std::endl;

18



Evaluating Types III

std::cout << (5/2)*5.0f/2 << std::endl;

// what type and value will this return and why?

Solution
float, 5.0, can be written as 5.0f.

First, the 5/2 gets evaluted which results in 2 (integer division). Then
2.0f*5.0f: The int 2 became a float because that is the more general
type (in this expression). Ditto for /2 later.

19



Evaluating Types III

std::cout << (5/2)*5.0f/2 << std::endl;

// what type and value will this return and why?

Solution
float, 5.0, can be written as 5.0f.

First, the 5/2 gets evaluted which results in 2 (integer division). Then
2.0f*5.0f: The int 2 became a float because that is the more general
type (in this expression). Ditto for /2 later.

19



Exercise I

1. Which of the following character sequences are not C++ expressions,
and why not? Here, x and y are variables of type int.

a) (y++ < 0 && y < 0) + 2.0
b) y = (x++ = 3)
c) 3.0 + 3 - 4 + 5
d) 5 % 4 * 3.0 + true * x++

2. For all of the valid expressions that you have identified in 1, decide
whether these are lvalues or rvalues and explain your decision.

3. Determine the values of the expressions and explain how these values
are obtained. Assume that initially x == 1 and y == -1.

20



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0
(true && false) + 2.0
(false) + 2.0
0.0 + 2.0
2.0

R-VALUE

21



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0

(true && y < 0) + 2.0
(true && false) + 2.0
(false) + 2.0
0.0 + 2.0
2.0

R-VALUE

21



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0

(true && false) + 2.0
(false) + 2.0
0.0 + 2.0
2.0

R-VALUE

21



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0
(true && false) + 2.0

(false) + 2.0
0.0 + 2.0
2.0

R-VALUE

21



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0
(true && false) + 2.0
(false) + 2.0

0.0 + 2.0
2.0

R-VALUE

21



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0
(true && false) + 2.0
(false) + 2.0
0.0 + 2.0

2.0

R-VALUE

21



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0
(true && false) + 2.0
(false) + 2.0
0.0 + 2.0
2.0

R-VALUE

21



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0
(true && false) + 2.0
(false) + 2.0
0.0 + 2.0
2.0

R-VALUE

21



Expression Evaluation - Solutions a)

(y++ < 0 && y < 0) + 2.0

(-1 < 0 && y < 0) + 2.0 // after this step: y==0
(true && y < 0) + 2.0
(true && false) + 2.0
(false) + 2.0
0.0 + 2.0
2.0

R-VALUE

21



Expression Evaluation - Solutions b)

y = (x++ = 3)

INVALID

22



Expression Evaluation - Solutions b)

y = (x++ = 3)

INVALID

22



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5
(6.0 - 4.0) + 5
2.0 + 5
2.0 + 5.0
7.0

R-VALUE

23



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5

((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5
(6.0 - 4.0) + 5
2.0 + 5
2.0 + 5.0
7.0

R-VALUE

23



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5

(6.0 - 4) + 5
(6.0 - 4.0) + 5
2.0 + 5
2.0 + 5.0
7.0

R-VALUE

23



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5

(6.0 - 4.0) + 5
2.0 + 5
2.0 + 5.0
7.0

R-VALUE

23



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5
(6.0 - 4.0) + 5

2.0 + 5
2.0 + 5.0
7.0

R-VALUE

23



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5
(6.0 - 4.0) + 5
2.0 + 5

2.0 + 5.0
7.0

R-VALUE

23



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5
(6.0 - 4.0) + 5
2.0 + 5
2.0 + 5.0

7.0

R-VALUE

23



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5
(6.0 - 4.0) + 5
2.0 + 5
2.0 + 5.0
7.0

R-VALUE

23



Expression Evaluation - Solutions c)

3.0 + 3 - 4 + 5

((3.0 + 3) - 4) + 5
((3.0 + 3.0) - 4) + 5
(6.0 - 4) + 5
(6.0 - 4.0) + 5
2.0 + 5
2.0 + 5.0
7.0

R-VALUE

23



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

R-VALUE

24



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))

(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

R-VALUE

24



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))

(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

R-VALUE

24



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))

3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

R-VALUE

24



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))

3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

R-VALUE

24



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)

3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

R-VALUE

24



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)

3.0 + 1
3.0 + 1.0
4.0

R-VALUE

24



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1

3.0 + 1.0
4.0

R-VALUE

24



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0

4.0

R-VALUE

24



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

R-VALUE

24



Expression Evaluation - Solutions d)

5 % 4 * 3.0 + true * x++

((5 % 4) * 3.0) + (true * (x++))
(1 * 3.0) + (true * (x++))
(1.0 * 3.0) + (true * (x++))
3.0 + (true * (x++))
3.0 + (true * 1)
3.0 + (1 * 1)
3.0 + 1
3.0 + 1.0
4.0

R-VALUE
24



Loop Correctness
Can a user of the program observe the di�erence between the output
produced by these three loops? If yes, how? Assume that n is a variable of
type unsigned int whose value is given by the user.

unsigned int n; std :: cin >> n;
unsigned int i ;

// loop 1 /////////////////////
for ( i = 1; i <= n; ++i ) {
std :: cout << i << "\n";

}

// loop 2 /////////////////////
i = 0;
while ( i < n) {

std :: cout << ++i << "\n";
}

// loop 3 /////////////////////
i = 1;
do {
std :: cout << i++ << "\n";

} while ( i <= n) ;

25

1 2 4

3



Loop Correctness - Solution

Solution
There are the following di�erences:

Unlike loops 1 and 2, loop 3 does output |1| for input |n == 0|

because the statement in a |do|-loop is always executed once before
the condition is checked.
If n is the largest possible integer, then the loops 1 and 3 may be infinite
because the condition |i <= n| is going to be true for all possible |i|.

26



Questions?

27



5. Loops

28



for æ while

// TASK: Convert the following for-loop

// into an equivalent while-loop:

for (int i = 0; i < n; ++i) {

BODY

}

// SOLUTION

int i = 0;

while(i < n){

BODY

++i;

}

29



for æ while

// TASK: Convert the following for-loop

// into an equivalent while-loop:

for (int i = 0; i < n; ++i) {

BODY

}

// SOLUTION

int i = 0;

while(i < n){

BODY

++i;

} 29



while æ for

// TASK: Convert the following while-loop

// into an equivalent for-loop:

while(condition){

BODY

}

// SOLUTION

for(;condition;){

BODY

}

30



while æ for

// TASK: Convert the following while-loop

// into an equivalent for-loop:

while(condition){

BODY

}

// SOLUTION

for(;condition;){

BODY

}

30



do-while æ for

// TASK: Convert the following do-while-loop

// into an equivalent for-loop:

do{

BODY

}while(condition)

// SOLUTION

BODY

for(;condition;){

BODY

}

31



do-while æ for

// TASK: Convert the following do-while-loop

// into an equivalent for-loop:

do{

BODY

}while(condition)

// SOLUTION

BODY

for(;condition;){

BODY

}

31



Questions?

32



6. Calculating Sums

33



From Series to Loop
Mathematical sums can be turned into loops

nÿ

i=0
f(i)

Becomes

int n = 0;

int sum = 0;

for(int i = 0; i <= n; i++){

sum += f(i);

}

34



From Series to Loop
Mathematical sums can be turned into loops

nÿ

i=0
f(i)

Becomes

int n = 0;

int sum = 0;

for(int i = 0; i <= n; i++){

sum += f(i);

}

34

2 100



From Series to Loop
Taylor Series on code expert
Write a program that calculates sin(x) up to six decimal places
Hint: What loop should be used here?
Use the MacLaurin Series.

sin x =
Œÿ

n=0

(≠1)n

(2n + 1)!x
2n+1

Task
Try with pen and paper (10min)
Try implementing together with person next to you in code expert
(10min)

35



From Series to Loop
Taylor Series on code expert
Write a program that calculates sin(x) up to six decimal places
Hint: What loop should be used here?
Use the MacLaurin Series.

sin x =
Œÿ

n=0

(≠1)n

(2n + 1)!x
2n+1

Task
Try with pen and paper (10min)

Try implementing together with person next to you in code expert
(10min)

35



From Series to Loop
Taylor Series on code expert
Write a program that calculates sin(x) up to six decimal places
Hint: What loop should be used here?
Use the MacLaurin Series.

sin x =
Œÿ

n=0

(≠1)n

(2n + 1)!x
2n+1

Task
Try with pen and paper (10min)
Try implementing together with person next to you in code expert
(10min)

35

I 10 min total until 15 20



Questions?

36



7. Tips for code expert

37



Tips for code expert

Tasks 1 and 2: “Loop mix-up”
If you can’t figure out the loops right away, try plugging in a few
numbers

Task 3: “Loop Analysis”
Q2: What values can variables of type unsigned int take?

38



8. Outro

39



General Questions?

40



Till next time!

Cheers!

41


