
Exercise Session W07
Computer Science (CSE, CBB, and Statistics) – AS 23

Overview

Today’s Agenda

Follow-up
Objectives
References
std::vector<T>
(ASCII) Characters
Feedback
Repetition: Floating Point Numbers
Outro

n.ethz.ch/~agavranovic

1

1. Follow-up

2

Follow-up

I added some slides to last week’s folder that I forgot to upload last
time (can be found under Addendum))
You can see my changes when you click "View Submission"

If you still can’t see them: then email me

3

2. Objectives

4

Objectives

□ be able to trace and write programs that use references
□ be able to write programs that create, modify, and iterate over vectors
□ be able to trace and write programs that modify ASCII characters

5

3. References

6

Example of Program Tracing I

int a = 3;
int& b = a;

b = 2;

std::cout << a;

Output:

2

7

Example of Program Tracing I

int a = 3;
int& b = a;

b = 2;

std::cout << a;

Output: 2

7

Example of Program Tracing II

void foo(int i){
i = 5;

}

int main(){
int i = 4;
foo(i);
std::cout << i << std::endl;

}

Output:

4 . . . but why? References (type&) are used as type of function
parameters (inputs) or return types (returns). If the parameters are not
referenced, we say passed to the function by value. (This is how we did it for
all previous functions). This always makes a copy of the input to the
function.

8

Example of Program Tracing II

void foo(int i){
i = 5;

}

int main(){
int i = 4;
foo(i);
std::cout << i << std::endl;

}

Output: 4 . . . but why?

References (type&) are used as type of function
parameters (inputs) or return types (returns). If the parameters are not
referenced, we say passed to the function by value. (This is how we did it for
all previous functions). This always makes a copy of the input to the
function.

8

Example of Program Tracing II

void foo(int i){
i = 5;

}

int main(){
int i = 4;
foo(i);
std::cout << i << std::endl;

}

Output: 4 . . . but why? References (type&) are used as type of function
parameters (inputs) or return types (returns). If the parameters are not
referenced, we say passed to the function by value. (This is how we did it for
all previous functions). This always makes a copy of the input to the
function. 8

Example of Program Tracing III

void foo(int& i){
i = 5;

}

int main(){
int i = 4;
foo(i);
std::cout << i << std::endl;

}

Output:

5 When a function parameter is a reference type (type&), we say
"passed (the argument) by reference"

9

Example of Program Tracing III

void foo(int& i){
i = 5;

}

int main(){
int i = 4;
foo(i);
std::cout << i << std::endl;

}

Output: 5

When a function parameter is a reference type (type&), we say
"passed (the argument) by reference"

9

Example of Program Tracing III

void foo(int& i){
i = 5;

}

int main(){
int i = 4;
foo(i);
std::cout << i << std::endl;

}

Output: 5 When a function parameter is a reference type (type&), we say
"passed (the argument) by reference"

9

References

Why all this?

you can influence several results/variables and don’t have to rely on
the return
you can save the (sometimes expensive) copying of parameters and
thus improve the performance of the program.
sometimes there is no other way (std::cout for example, we will have
a look in a few weeks)

10

References

Why all this?
you can influence several results/variables and don’t have to rely on
the return

you can save the (sometimes expensive) copying of parameters and
thus improve the performance of the program.
sometimes there is no other way (std::cout for example, we will have
a look in a few weeks)

10

References

Why all this?
you can influence several results/variables and don’t have to rely on
the return
you can save the (sometimes expensive) copying of parameters and
thus improve the performance of the program.

sometimes there is no other way (std::cout for example, we will have
a look in a few weeks)

10

References

Why all this?
you can influence several results/variables and don’t have to rely on
the return
you can save the (sometimes expensive) copying of parameters and
thus improve the performance of the program.
sometimes there is no other way (std::cout for example, we will have
a look in a few weeks)

10

Questions?

11

References as Return Types
We have now seen function parameters that have a reference type, but
references can also be used for return types

int& increment(int& m){
return ++m;

}

int main(){
int n = 3;

increment(increment(n));

std::cout << n << std::endl;
}

Output: 5, but why? Because of the references!

12

References as Return Types
We have now seen function parameters that have a reference type, but
references can also be used for return types

int& increment(int& m){
return ++m;

}

int main(){
int n = 3;

increment(increment(n));

std::cout << n << std::endl;
}

Output:

5, but why? Because of the references!

12

References as Return Types
We have now seen function parameters that have a reference type, but
references can also be used for return types

int& increment(int& m){
return ++m;

}

int main(){
int n = 3;

increment(increment(n));

std::cout << n << std::endl;
}

Output: 5, but why?

Because of the references!

12

References as Return Types
We have now seen function parameters that have a reference type, but
references can also be used for return types

int& increment(int& m){
return ++m;

}

int main(){
int n = 3;

increment(increment(n));

std::cout << n << std::endl;
}

Output: 5, but why? Because of the references!
12

Questions?

13

Reference or Copy? I

int foo (int& a, int b) {
a += b;
return a;

}

int main() {
int a = 0;
int b = 1;
for (int i = 0; i<5; ++i) {

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output:

1 2 4 8 16. . . buy why?

14

Reference or Copy? I

int foo (int& a, int b) {
a += b;
return a;

}

int main() {
int a = 0;
int b = 1;
for (int i = 0; i<5; ++i) {

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output: 1 2 4 8 16

. . . buy why?

14

Reference or Copy? I

int foo (int& a, int b) {
a += b;
return a;

}

int main() {
int a = 0;
int b = 1;
for (int i = 0; i<5; ++i) {

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output: 1 2 4 8 16. . . buy why?

14

Reference or Copy? II

int foo (int a, int b) {
a += b;
return a;

}

int main() {
int a = 0;
int b = 1;
for (int i = 0; i < 5; ++i) {

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output:

1 1 1 1 1. . . buy why?

15

Reference or Copy? II

int foo (int a, int b) {
a += b;
return a;

}

int main() {
int a = 0;
int b = 1;
for (int i = 0; i < 5; ++i) {

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output: 1 1 1 1 1

. . . buy why?

15

Reference or Copy? II

int foo (int a, int b) {
a += b;
return a;

}

int main() {
int a = 0;
int b = 1;
for (int i = 0; i < 5; ++i) {

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output: 1 1 1 1 1. . . buy why?

15

Reference or Copy? III

int foo (int a, int& b) {
a += b;
return a;

}

int main() {
int a = 0;
int b = 1;
for (int i = 0; i < 5; ++i) {

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output:

1 1 1 1 1. . . buy why?

16

Reference or Copy? III

int foo (int a, int& b) {
a += b;
return a;

}

int main() {
int a = 0;
int b = 1;
for (int i = 0; i < 5; ++i) {

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output: 1 1 1 1 1

. . . buy why?

16

Reference or Copy? III

int foo (int a, int& b) {
a += b;
return a;

}

int main() {
int a = 0;
int b = 1;
for (int i = 0; i < 5; ++i) {

b = foo(a, b);
std::cout << b << " ";

}
return 0;

}

Output: 1 1 1 1 1. . . buy why?

16

Questions?

17

4. std::vector<T>

18

How to std::vector

#include <vector>

Vectors can be thought of as a series of boxes, each storing a value of
the given type
You can treat vectors something like a new type
std::vector<int> myvector{1,2,3};
to initialize a vector
There are many ways to initialize/define a vector. Look in the
Summaries or search online
myvector.at(n-1)
to get the n’th value in the vector
myvector.push_back(x)
to append the value x

19

How to std::vector

#include <vector>
Vectors can be thought of as a series of boxes, each storing a value of
the given type

You can treat vectors something like a new type
std::vector<int> myvector{1,2,3};
to initialize a vector
There are many ways to initialize/define a vector. Look in the
Summaries or search online
myvector.at(n-1)
to get the n’th value in the vector
myvector.push_back(x)
to append the value x

19

How to std::vector

#include <vector>
Vectors can be thought of as a series of boxes, each storing a value of
the given type
You can treat vectors something like a new type

std::vector<int> myvector{1,2,3};
to initialize a vector
There are many ways to initialize/define a vector. Look in the
Summaries or search online
myvector.at(n-1)
to get the n’th value in the vector
myvector.push_back(x)
to append the value x

19

How to std::vector

#include <vector>
Vectors can be thought of as a series of boxes, each storing a value of
the given type
You can treat vectors something like a new type
std::vector<int> myvector{1,2,3};
to initialize a vector

There are many ways to initialize/define a vector. Look in the
Summaries or search online
myvector.at(n-1)
to get the n’th value in the vector
myvector.push_back(x)
to append the value x

19

How to std::vector

#include <vector>
Vectors can be thought of as a series of boxes, each storing a value of
the given type
You can treat vectors something like a new type
std::vector<int> myvector{1,2,3};
to initialize a vector
There are many ways to initialize/define a vector. Look in the
Summaries or search online

myvector.at(n-1)
to get the n’th value in the vector
myvector.push_back(x)
to append the value x

19

How to std::vector

#include <vector>
Vectors can be thought of as a series of boxes, each storing a value of
the given type
You can treat vectors something like a new type
std::vector<int> myvector{1,2,3};
to initialize a vector
There are many ways to initialize/define a vector. Look in the
Summaries or search online
myvector.at(n-1)
to get the n’th value in the vector

myvector.push_back(x)
to append the value x

19

How to std::vector

#include <vector>
Vectors can be thought of as a series of boxes, each storing a value of
the given type
You can treat vectors something like a new type
std::vector<int> myvector{1,2,3};
to initialize a vector
There are many ways to initialize/define a vector. Look in the
Summaries or search online
myvector.at(n-1)
to get the n’th value in the vector
myvector.push_back(x)
to append the value x

19

Questions?

20

5. (ASCII) Characters

21

Exercise "Converting Input to UPPER CASE"

Task
Write a program that reads a sequence of characters, delimited by the
new-line character, as a vector of char. Then the program should output
the sequence with all lower-case letters changed to UPPER-CASE letters.
To read the sequence you can:

read a single character from standard input
insert it into a vector of chars
repeat until you find a newline character (\n).

Please put the code that converts the entire sequence to upper-case and a
single character to upper-case into separate functions (you should have at
least three functions).
Hint: variables of type char can be treated as numbers.

22

Exercise "Converting Input to UPPER CASE"

Task
1. Consider how best to approach the "Converting Input to UPPER CASE"

task on code expert

2. Implement (optionally in groups) a solution

23

Exercise "Converting Input to UPPER CASE"

Task
1. Consider how best to approach the "Converting Input to UPPER CASE"

task on code expert
2. Implement (optionally in groups) a solution

23

(Solution) "Converting Input to UPPER CASE"

#include <iostream>
#include <vector>
#include <ios>

24

(Solution) "Converting Input to UPPER CASE"

// POST: Converts the letter to upper case.
void char_to_upper(char& letter){

if('a' <= letter && letter <= 'z'){
letter -= 'a' - 'A'; // 'a' > 'A'

}
}

// POST: Converts all letters to upper-case.
void to_upper(std::vector<char>& letters){

for(unsigned int i = 0; i < letters.size(); ++i){
char_to_upper(letters.at(i));

}
}

25

Solution "Converting Input to UPPER CASE"

std::cin >> std::noskipws;
std::vector<char> letters;
char ch;

// Step 1: Read input.
do{

std::cin >> ch;
letters.push_back(ch);

}while(ch != '\n');

// Step 2: Convert to upper-case.
to_upper(letters);

// Step 3: Output.
for(unsigned int i = 0; i < letters.size(); ++i){

std::cout << letters.at(i);
} 26

Questions?

27

6. Feedback

28

Your Feedback to me

Feedback form

(Take your time and be frank)
29

7. Repetition: Floating Point Numbers

30

Normalized Floating Point Number Systems

Task
Try to solve following tasks (as a group)
Ask if anything remain unclear

31

Consider the normalized floating point number system F ⇤ (�, p, emin, emax) with � = 2,
p = 3, emin = �4, emax = 4.
Compute the following expressions as the parentheses suggest, representing each
intermediate result (and the final result) in the normalized floating point system
according to the rules of computing with floating point numbers.

(10 + 0.5) + 0.5
decimal binary

10 ?????

+ 0.5 ?????

= ?????

+ 0.5 ?????

= ?? ?????

(0.5 + 0.5) + 10
decimal binary

0.5 ?????

+ 0.5 ?????

= ?????

+ 10 ?????

= ?? ?????

1

(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= ?????

+ 0.5 ?????

= ?? ?????

(0.5 + 0.5) + 10
decimal binary

0.5 ?????

+ 0.5 ?????

= ?????

+ 10 ?????

= ?? ?????

2

(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.0101 · 23

+ 0.5 ?????

= ?? ?????

(0.5 + 0.5) + 10
decimal binary

0.5 ?????

+ 0.5 ?????

= ?????

+ 10 ?????

= ?? ?????

3

(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= ?? ?????

(0.5 + 0.5) + 10
decimal binary

0.5 ?????

+ 0.5 ?????

= ?????

+ 10 ?????

= ?? ?????

4

(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= 10 1.01 · 23

(0.5 + 0.5) + 10
decimal binary

0.5 ?????

+ 0.5 ?????

= ?????

+ 10 ?????

= ?? ?????

5

(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= 10 1.01 · 23

(0.5 + 0.5) + 10
decimal binary

0.5 1.00 · 2�1

+ 0.5 1.00 · 2�1

= ?????

+ 10 ?????

= ?? ?????

6

(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= 10 1.01 · 23

(0.5 + 0.5) + 10
decimal binary

0.5 1.00 · 2�1

+ 0.5 1.00 · 2�1

= 1.00 · 20

+ 10 1010.00 · 20

= ?? ?????

7

(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= 10 1.01 · 23

(0.5 + 0.5) + 10
decimal binary

0.5 1.00 · 2�1

+ 0.5 1.00 · 2�1

= 1.00 · 20

+ 10 1010.00 · 20

= ?? 1011.00 · 20

8

(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= 10 1.01 · 23

(0.5 + 0.5) + 10
decimal binary

0.5 1.00 · 2�1

+ 0.5 1.00 · 2�1

= 1.00 · 20

+ 10 1010.00 · 20

= ?? 1.011 · 23

9

(10 + 0.5) + 0.5
decimal binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= 10 1.01 · 23

(0.5 + 0.5) + 10
decimal binary

0.5 1.00 · 2�1

+ 0.5 1.00 · 2�1

= 1.00 · 20

+ 10 1010.00 · 20

= 12 1.10 · 23

10

Questions?

32

8. Outro

33

General Questions?

34

Till next time!

Cheers!

35

	Follow-up
	Objectives
	References
	std::vector<T>
	(ASCII) Characters
	Feedback
	Repetition: Floating Point Numbers
	Outro

