EHzürich

Exercise Session W08 Computer Science (CSE & CBB & Statistics) – AS 23

Overview

Today's Agenda

Follow-up Objectives Multidimensional Vectors Recursion Outro

n.ethz.ch/~agavranovic

1

1. Follow-up

Follow-up

- Thank you all for the overwhelmingly positive Feedback!
- If there's still something you want to tell me, feel free to send me an email (with a throwaway address if you want to stay anonymous)

Questions?

Objectives

be able to write programs using multidimensional vectors
 be able to understand and write programs using recursion

3. Multidimensional Vectors

What are Multidimensional Vectors?

Multidimensional vectors are Matrices¹

¹they're actually vectors of vectors!

Exercise "Matrix Transpose"

Open "Matrix Transpose" on code expert

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^{\top} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

Think about how you would approach the problem with pen and paper

Simplification of the syntax: using irow = std::vector<int>;

```
using imatrix = std::vector<irow>;
```

Implement a solution (optionally in groups)

Solution to "Matrix Transpose"

```
imatrix transpose matrix(const imatrix &matrix){
 unsigned int r. c;
 r = get rows(matrix); // number of rows
 c = get cols(matrix); // number of columns
 imatrix transposed matrix; // init' transp. matrix
 for(unsigned int col i = 0; col i < c; col i++){</pre>
   irow row:
                            // init' transp. row
   // entry-wise add transp. row to transp. matrix
   for(unsigned int row i = 0; row i < r; row i++){</pre>
     row.push_back(matrix.at(row_i).at(col_i));
   }
   transposed matrix.push back(row);
 3
 return transposed matrix;
}
```

Questions?

What is Recursion?

Recursion

often helpful when solving problems using the *divide and conquer-approach*

We want to solve a problem for n

- 1. Find a way to split the problem into smaller subproblems: $k_0, k_1, \ldots, k_m \quad (\forall 0 \le i \le m : k_i < n)$
- 2. Solve every k_i independently (perhaps by subdividing further)
- 3. Construct the solution to the problem from the solutions to the subproblems

Example of Recursion

We want to write a function with the following PRE and POSTs

```
// PRE: a positive integer n
11
// POST: returns the n-th number of a series x_n, defined as
11
  x_n = 2,
                                for n = 1
// x_n = 1,
                            for n = 2
// x_n = x_{(n-1)} + x_{(n-2)}, for n > 2
11
// Example:
// * n == 1 ~~> 2
// * n == 2 ~~> 1
// * n == 3 ~~> 3
```

Example of Recursion

```
// PRE: a positive integer n
11
// POST: returns the n-th number of a serie x_n, defined as
// x_n = 2,
                               for n = 1
                            for n = 2
// x n = 1,
// x n = x (n-1) + x (n-2), for n > 2
unsigned int compute element(unsigned int n) {
 if (n == 1) return 2;
 else if (n == 2) return 1:
  else return compute_element(n-1) + compute_element(n-2);
}
```

Video Recommendations

Especially try to follow the concept of the *Recursive Leap of Faith*. It is comparable to the induction hypothesis in an induction proof in maths.

Videos on recursion

▶ 5 Simple Steps for Solving Any Recursive Problem

Exercise "Partial Sum"

Task

Write a function that

- 1. Computes the sum of all natural numbers below (and equal to) n using recursion and returns this value
- 2. Outputs all the added terms in ascending order (from 0 to n to the console in the same recursive function)

Exercise "Partial Sum"

- Open "Partial Sum" on code expert
- Think about how you would approach the problem with pen and paper
- Implement a (recursive) solution (optionally in groups)

Solution to "Partial Sum"

```
unsigned int partial sum(const unsigned int n) {
  if (n == 0){
   return 0:
 } else {
    // print descending
    unsigned int partial = partial_sum(n - 1);
    // print ascending
    std::cout << n << std::endl;</pre>
    return n + partial;
  }
3
```

Solution to "Partial Sum"

```
int main() {
  std::cout << "n = ";
  unsigned int n;
  std::cin >> n;
  std::cout << partial_sum(n) << std::endl;
  return 0;
}</pre>
```

Questions?

Exercise "Power Function"

Question

How many recursive calls does the following function need to compute x^7 ?

```
unsigned int power(const unsigned int x, const unsigned int n) {
    if (n == 0){
        return 1;
    } else if (n ==1) {
        return x;
    }
    return x * power(x, n - 1);
}
```

Answer:7

Exercise "Power Function"

Task

Write a function that requires significantly less recursive calls for larger n. How many recursive calls does your implementation require?

Exercise "Power Function"

- Open "Power Function" on code expert
- Think about how you would approach the problem with pen and paper
- Implement a (recursive) solution (optionally in groups)
- Hint: This task is a generalization of the task "Multiply with 29" from the first week

Solution to "Power Function"

```
// POST: result == x^n
unsigned int power (const unsigned int x, const unsigned int n) {
  if(n == 0) {
    return 1:
  } else if(n == 1) {
    return x:
  } else if(n % 2 == 0) {
    int temp = power(x, n/2);
    return temp * temp;
  } else {
    return x * power(x, n-1);
  }
3
```

Questions?

General things regarding code expert

E8:T1: "Vector and matrix operations"

- The task can seem very daunting. Keep an overview over all the different possible cases (perhaps using sketches) and try to implement separate functions for the operations.
- Use **using** to make the program clearer
- Don't forget // comments &references, and const!

General Questions?

Till next time!

Cheers!