
Exercise Session W08
Computer Science (CSE & CBB & Statistics) – AS 23



Overview

Today’s Agenda

Follow-up
Objectives
Multidimensional Vectors
Recursion
Outro

n.ethz.ch/~agavranovic

1



1. Follow-up

2



Follow-up

Thank you all for the overwhelmingly positive Feedback!
If there’s still something you want to tell me, feel free to send me an
email (with a throwaway address if you want to stay anonymous)

3



Questions?

4



2. Objectives

5



Objectives

□ be able to write programs using multidimensional vectors
□ be able to understand and write programs using recursion

6



3. Multidimensional Vectors

7



What are Multidimensional Vectors?

Multidimensional vectors are Matrices1

1they’re actually vectors of vectors!
8



Exercise "Matrix Transpose"

Open "Matrix Transpose" on code expert
1 2
3 4
5 6


⊤

=
[
1 3 5
2 4 6

]

Think about how you would approach the problem with pen and paper
Simplification of the syntax:
using irow = std::vector<int>;
using imatrix = std::vector<irow>;
Implement a solution (optionally in groups)

9



Solution to "Matrix Transpose"

imatrix transpose_matrix(const imatrix &matrix){
unsigned int r, c;
r = get_rows(matrix); // number of rows
c = get_cols(matrix); // number of columns
imatrix transposed_matrix; // init' transp. matrix
for(unsigned int col_i = 0; col_i < c; col_i++){

irow row; // init' transp. row
// entry-wise add transp. row to transp. matrix
for(unsigned int row_i = 0; row_i < r; row_i++){

row.push_back(matrix.at(row_i).at(col_i));
}
transposed_matrix.push_back(row);

}
return transposed_matrix;

}

10



Questions?

11



4. Recursion

12



What is Recursion?

Recursion
often helpful when solving problems using the divide and
conquer-approach
We want to solve a problem for n

1. Find a way to split the problem into smaller subproblems:
k0, k1, . . . , km (∀0 ≤ i ≤ m : ki < n)

2. Solve every ki independently (perhaps by subdividing further)
3. Construct the solution to the problem from the solutions to the

subproblems

13



Example of Recursion

We want to write a function with the following PRE and POSTs

// PRE: a positive integer n
//
// POST: returns the n-th number of a series x_n, defined as
// x_n = 2, for n = 1
// x_n = 1, for n = 2
// x_n = x_(n-1) + x_(n-2), for n > 2
//
// Example:
// * n == 1 ~~> 2
// * n == 2 ~~> 1
// * n == 3 ~~> 3

14



Example of Recursion

// PRE: a positive integer n
//
// POST: returns the n-th number of a serie x_n, defined as
// x_n = 2, for n = 1
// x_n = 1, for n = 2
// x_n = x_(n-1) + x_(n-2), for n > 2

unsigned int compute_element(unsigned int n) {
if (n == 1) return 2;
else if (n == 2) return 1;
else return compute_element(n-1) + compute_element(n-2);

}

15



Video Recommendations

Especially try to follow the concept of the Recursive Leap of Faith. It is
comparable to the induction hypothesis in an induction proof in maths.

Videos on recursion
Towers of Hanoi: A Complete Recursive Visualization

5 Simple Steps for Solving Any Recursive Problem

16

https://www.youtube.com/watch?v=rf6uf3jNjbo
https://www.youtube.com/watch?v=ngCos392W4w


Exercise "Partial Sum"

Task
Write a function that

1. Computes the sum of all natural numbers below (and equal to) n using
recursion and returns this value

2. Outputs all the added terms in ascending order (from 0 to n to the
console in the same recursive function)

17



Exercise "Partial Sum"

Open "Partial Sum" on code expert
Think about how you would approach the problem with pen and paper
Implement a (recursive) solution (optionally in groups)

18



Solution to "Partial Sum"

unsigned int partial_sum(const unsigned int n) {
if (n == 0){

return 0;
} else {

// print descending
unsigned int partial = partial_sum(n - 1);

// print ascending
std::cout << n << std::endl;

return n + partial;
}

}

19



Solution to "Partial Sum"

int main() {
std::cout << "n = ";

unsigned int n;
std::cin >> n;

std::cout << partial_sum(n) << std::endl;

return 0;
}

20



Questions?

21



Exercise "Power Function"

Question
How many recursive calls does the following function need to compute x7?

unsigned int power(const unsigned int x, const unsigned int n) {

if (n == 0){
return 1;

} else if (n ==1) {
return x;

}

return x * power(x, n - 1);
}

Answer:7
22



Exercise "Power Function"

Task
Write a function that requires significantly less recursive calls for larger n.
How many recursive calls does your implementation require?

23



Exercise "Power Function"

Open "Power Function" on code expert
Think about how you would approach the problem with pen and paper
Implement a (recursive) solution (optionally in groups)
Hint: This task is a generalization of the task "Multiply with 29" from the
first week

24



Solution to "Power Function"

// POST: result == x^n
unsigned int power (const unsigned int x, const unsigned int n) {

if(n == 0) {
return 1;

} else if(n == 1) {
return x;

} else if(n % 2 == 0) {
int temp = power(x, n/2);
return temp * temp;

} else {
return x * power(x, n-1);

}
}

25



Questions?

26



5. Outro

27



General things regarding code expert

E8:T1: "Vector and matrix operations"
The task can seem very daunting. Keep an overview over all the
different possible cases (perhaps using sketches) and try to implement
separate functions for the operations.
Use using to make the program clearer
Don’t forget // comments &references, and const!

28



General Questions?

29



Till next time!

Cheers!

30


	Follow-up
	Objectives
	Multidimensional Vectors
	Recursion
	Outro

