
Exercise Session W09
Computer Science (CSE & CBB & Statistics) – AS 23

Overview

Today’s Agenda

Follow-up
Feedback on code expert
Objectives
Recursion II
Structs
Outro n.ethz.ch/~agavranovic

1

1. Follow-up

2

Follow-up from previous exercise sessions

Efficiency of "read_matrix":

The version with the pre-initialized matrix should generally be more
efficient, since it uses less dynamically allocated memory1

It only really makes a difference for very big matrices, so you do not need
to worry about the efficiency for now

1You will learn what this means towards the end of the semester
3

2. Feedback on code expert

4

General things regarding code expert

A few simiplifications for your code2

if(condition == true){
// ...

}
→

if(condition){
//...

}

if(condition){
return true;

} else {
return false;

}

→ return condition;

In case of function that return a bool

2Remember: simplifications aren’t always better for comprehension
5

Specific things regarding code expert

E7:T1: "Const and reference types"
What does const mean?

Once a const variable has been initialized, its value cannot be changed
The variable can be used in the program (but "read only")

When is constness (not) respected?

Default: if nothing is declared const then constness is respected
Otherwise: you must not attempt to modify the value of a const variable
(no "write access")

6

Questions?

7

3. Objectives

8

Objectives

□ be able to solve more advanced problems involving recursion
□ be able to define and use structs

9

4. Recursion II

10

Exercise Power Set

DiskMath Recap
A power set is the set of all subsets
2S := {X|X ⊆ S}
Example:

Given the set A = {a, b, c}
Its power set is 2A = {{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

11

Primer on set.h

set is a self-made type! (a class)
How does it work? See for yourself in set.h!

template <typename T>
class Set {

public:
Set(const Set& other);
// Creates an empty set
Set();
// Creates a new set from a set of elements
Set(const std::set<T>& elements);
// Creates a new set from a single element
Set(T element);
// ...

};

12

Exercise Power Set

Open "Power Set" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)
You can find the functionalities of the type set in the main.cpp file

13

Solution to "Power Set" (Base case)

SetOfCharSets power_set(const CharSet& set) {
// base case: empty set
if (set.size() == 0) {

return SetOfCharSets(CharSet());
}

14

Solution to "Power Set"

// set has at least 1 element -> split set into two sets.
CharSet first_element_subset = CharSet(set.at(0));
CharSet remaining_subset = set - first_element_subset;

// get power set for remaining subset
SetOfCharSets remaining_subset_power_set = power_set(remaining_subset);

// init result with power set of remaining subset
SetOfCharSets result = remaining_subset_power_set;

// add first element to every set in the powerset
for (unsigned int i = 0; i < remaining_subset_power_set.size(); ++i) {

result.insert(first_element_subset + remaining_subset_power_set.at(i));
}

return result;
15

Solution to "Power Set" (Conceptually)
Given: {a, b, c, d}
// set has at least 1 element -> split set into two sets

{a}, {b, c, d}
// get power set for remaining subset3

P({b, c, d}) = {{}, {b}, {c}, {d}, {b, c}, . . . }
// init result with power set of remaining subset

result← {{}, {b}, {c}, {d}, {b, c}, . . . }
// add first element to every set in the powerset{

{}, {b}, {c}, {d}, {b, c}, . . . ,
{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, . . . ,

}
3Here is where the Recursive Leap of Faith kicks in

16

Questions?

17

Towers of Hanoi

18

Experiment: The Towers of Hanoi

left middle right

1

Experiment: The Towers of Hanoi

left middle right

1

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Die Türme von Hanoi - So gehts!

left middle right

2

Exercise Towers of Hanoi

Open "Towers of Hanoi" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

19

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs ...

... then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs ...

... then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

assume we knew how
to ...

... transfer three discs then it becomes simple!

... and hop!

3

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we move three
discs?

assume we knew how
to ...

... transfer two discs from one
pile to another ...

... then it is very simple!

4

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

The Towers of Hanoi – Recursive Approach

left middle right

but how can we transfer
two discs?

We already know, how to ...

... move one disc from one pile
to the other!

All is simple! The rest con-
tinues in the same way...

5

The Towers of Hanoi – Code

left middle right

Move 4 discs from left to right with auxiliary staple middle:

move(4,"left","middle","right")
6

The Towers of Hanoi – Code

move(n, src, aux, dst))
1 Move the top n � 1 discs from src to aux with auxiliary staple dst :

move(n � 1, src, dst, aux);

2 Move 1 disc from src to dst
move(1, src, aux, dst);

3 Move the top n � 1 discs from aux to dst with auxiliary staple src:
move(n � 1, aux, src, dst);

7

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (‘move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case

}
}

8

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (‘move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case
move(n-1, src, dst, aux);

}
}

8

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (‘move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case
move(n-1, src, dst, aux);
move(1, src, aux, dst);

}
}

8

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (‘move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case
move(n-1, src, dst, aux);
move(1, src, aux, dst);
move(n-1, aux, src, dst);

}
}

8

The Towers of Hanoi – Code
void move(int n, const string &src, const string &aux, const string &dst){

if (n == 1) {
// base case (’move’ the disc)
std :: cout << src << " ��> " << dst << std::endl;

} else {
// recursive case
move(n�1, src, dst, aux);
move(1, src, aux, dst);
move(n�1, aux, src, dst);

}
}
int main() {

move(4, " left " , "middle", "right");
return 0;

}
9

The Towers of Hanoi – Code Alternative
void move(int n, const string &src, const string &aux, const string &dst){

// base case
if (n == 0) return;

// recursive case
move(n�1, src, dst, aux);
std :: cout << src << " ��> " << dst << "\n";
move(n�1, aux, src, dst);

}

int main() {
move(4, " left " , "middle", "right");
return 0;

}
10

Questions?

20

5. Structs

21

Structs

A struct is a bundle of stuff
That could be variables, functions, other structs, and much more
("members")
The types do not have to be the same
Offer us a way to define new "objects", e.g. your own number type or
mathematical objects such as lines, squares, circles, etc.
Important: Do not forget the ; at the end of the definition

22

Structure of struct

struct Person {
unsigned int age;
std::string field;
std::vector<int> lucky_nums;

};

int main () {
Person Adel = {26, "Computer Science", {42, 161}};
Person Deli = Adel;
Person Jules = {25, "Linguistics", {13, 12}};
Person Lily = {19, "Computational Science", {9, 19}};
std::cout << "Adel's " << Adel.age <<

" years old\n" << std::endl;
return 0;

}

23

Questions?

24

Exercise "Geometry Exercise"

Open "Geometry Exercise" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

25

Solution to "Geometry Exercise"

// Subtask 1: adding vectors
// POST: returns the sum of a and b
vec sum(const vec& a, const vec& b) {

// version 1: compact, used for the rest of the example
return {a.x + b.x, a.y + b.y, a.z + b.z};

// version 2: longer but maybe easier to understand
// vec tmp;
// tmp.x = a.x + b.x;
// tmp.y = a.y + b.y;
// tmp.z = a.z + b.z;
// return tmp;

}

26

Solution to "Geometry Exercise"

// Subtask 2: defining a line in 3D
struct line {

vec start;
vec end; // INV: start != end

};
// helper function to print a vector
void print_line(const line& l) {

print_vec(l.start);
std::cout << " <-> ";
print_vec(l.end);

}

27

Solution to "Geometry Exercise"

// Subtask 3: shifting line by a vector
// POST: returns a new line obtained by shifting l
// by v.
line shift_line(const line& l, const vec& v) {

return {sum(l.start, v), sum(l.end, v)};
}

// Subtask 4: overloading the + operator for vectors
vec operator+(const vec& a, const vec& b) {

return sum(a, b);
}

28

Solution to "Geometry Exercise"

// Subtask 5: overloading the + operator for lines
// version 1: use the shift_line function
line operator+(const line& l, const vec& v) {

return shift_line(l, v);
}

// version 2: make use of the overloaded + operator for vectors
line operator+(const line& l, const vec& v) {

return {l.start + v, l.end + v};
}

29

Questions?

30

6. Outro

31

General Questions?

32

Till next time!

Cheers!

33

	Follow-up
	Feedback on codeexpertcolorcode expert
	Objectives
	Recursion II
	Structs
	Outro

