
Exercise Session W10
Computer Science (CSE & CBB & Statistics) – AS 23



Overview

Today’s Agenda

Feedback on code expert
Important Update regarding Feedback
Objectives
Classes and Operator Overloading
Exercise "Tribool"
Iterators
Outro n.ethz.ch/~agavranovic

1



1. Feedback on code expert

2



General things regarding code expert

All of the submissions have increased a lot in quality!
Code looks a lot more legible and structured
You all should study the master solution to E6:T1 "Perpetual Calendar"

not because most of the submissions were bad (they were very good)
but because it’s a good exercise in breaking down a difficult problem into
(many) more easier ones
and it contains a lot of handy ways of writing code

3



2. Important Update regarding Feedback

4



Important Update regarding Feedback

Due to time constraints and a massive correction backlog, I have to
drastically reduce the feedback I’m giving for coding exercises on code
expert . This means the following for you:

Unless you specifically ask for feedback (as a comment at the very top
of the submitted code), I will not give you (detailed) feedback

Something like // FEEDBACK PLEASE in the first couple lines is enough
You’re still encouraged to submit solutions and questions
Text tasks will almost always still get full feedback

The TA and Autograder points will still be awarded like before
No feedback indicates a good submission anyway
Some unsolicited feedback might still be provided if deemed necessary

5



Questions?

6



3. Objectives

7



Objectives

□ be able to define own classes
□ be able to overload operators for defined classes
□ be able to use iterators

8



4. Classes and Operator Overloading

9



Differentiating between functions

It is possible for two functions to have the same name, as long as the
compiler has another way to differentiate between them. The only possible
criteria for distinguishing functions are:

Names of the functions
Numbers of function arguments
Types of function arguments

10



Putting the Fun in Function I

Will this produce a compiler error?

int fun1(const int a){
// ...

}

int fun1(const int a, const int b){
// ...

}

Answer: No, because the two functions have a different numbers of
arguments (1 vs 2)

11



Putting the Fun in Function II

Will this produce a compiler error?

int fun2(const int a){
// ...

}

int fun2(const float a){
// ...

}

Answer: No, because the two functions have a different parameter types
(int vs float)

12



Putting the Fun in Function III

Will this produce a compiler error?

int fun3(const int a){
// ...

}

int fun3(const int b){
// ...

}

Answer: Yes, because the two functions don’t have different numbers or
types of arguments

Notice: The names of the function parameters are irrelevant to the
compiler!

13



Putting the Fun in Function IV

Will this produce a compiler error?

int fun4(const int a){
// ...

}

double fun4(const int a){
// ...

}

Answer: Yes, because the two functions don’t have different numbers or
types of arguments

Notice: The return types of the functions are irrelevant to the compiler!
14



Putting the Fun in Function V

Will this produce a compiler error?

int fun5(const int a){
// ...

}

int fun6(const int a){
// ...

}

Answer: No, because the two functions carry different names

15



Just my Type

void out(const int i){
std::cout << i << " (int)\n";

}
void out(const double i){

std::cout << i << " (double)\n";
}

int main(){
out(3.5);
out(2);
out(2.0);
out(0);
out(0.0);
return 0;

}

What’s the output going to be?
3.5 (double)
2 (int)
2 (double)
0 (int)
0 (double)

16



Questions?

17



5. Exercise "Tribool"

18



Tribool as a Logic Object

How could we implement this in C++?
What operations and values do we need?

19



Exercise "Tribool"

class Tribool {
private:

// 0 means false, 1 means unknown, 2 means true.
unsigned int value; // INV: value in {0, 1, 2}.

public:
// ...

};

20



Exercise "Tribool"

class Tribool {
private:

// ...
public:

// Constructor 1 (passing a numerical value)
// PRE: value in {0, 1, 2}.
// POST: tribool false if value was 0, unknown if 1, and true if 2.
Tribool(unsigned int value_int);
// TODO: add the definition in tribool.cpp

// Constructor 2 (passing a string value)
// PRE: value in {"true", "false", "unknown"}.
// POST: tribool false, true or unknown according to the input.
// TODO: add declaration here and the definition in tribool.cpp
// ...

};
21



Exercise "Tribool"

class Tribool {
private:

// ...
public:

// ...
// Member function string()
// POST: Return the value as string
// TODO: add declaration here and the definition in tribool.cpp

// Operator && overloading
// POST: returns this AND other
// TODO: add declaration here and the definition in tribool.cpp

};

22



Exercise "Tribool"

Where do we even start?
1. First (int) Constructor
2. Second (std::string) Constructor
3. Implement string() method
4. Implement logical AND as an operator

Where to put all this?
Declarations into Tribool.h
Definitions into Tribool.cpp

Using Out-of-Class definitions using the Scope Resolution Operator ::

23



Let’s Code (together)!

Open "Tribool" on code expert
We’re doing a live coding session

24



Exercise "Tribool" Concepts

We encountered the following concepts and keywords while solving this
task:

Classes and Structs
Visibility
Operator Overloading
Declaration vs Definition
Out-of-Class-Definitions
const Functions
Constructors ("C-tors")
Member Initializer Lists
. . .

25



Questions?

26



6. Iterators

27



What even are Iterators?

Iterators are used iterate (or move) through elements in a Container
What are Containers then?

Containers are objects that are used to store collections of elements
Some common C++containers include
▶ std::vector
▶ std::set
▶ std::list

A complete list of the containers of the C++-standard library can be
found here1

1https://en.cppreference.com/w/cpp/container
28

https://en.cppreference.com/w/cpp/container


Using Iterators on Containers

Very easy and by design always the same!
Given: a container named C

it = C.begin()
Iterator pointing to first element
it = C.end()
Iterator pointing to first element past the end2

*it
Access (and maybe modify) current element
++it
Advance iterator by one element

2PTE: Past-the-End
29



Exercise "Find Max"

// PRE: i < j <= v.size()
// POST: Returns the greatest element of all elements
// with indices between i and j (excluding j)
unsigned int find_max(const std::vector<unsigned int>& v,

unsigned int i,
unsigned int j){

unsigned int max_value = 0;

for (; i < j; ++i) {
if (max_value < v.at(i)) {

max_value = v.at(i);
}

}

return max_value;
}

30



Exercise "Find Max"

Open "Find Max" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

31



Exercise "Find Max" (Solution)

// PRE: (begin < end) && (begin and end must be valid iterators)
// POST: Return the greatest element in the range [begin, end)
unsigned int find_max(std::vector<unsigned int>::iterator begin,

std::vector<unsigned int>::iterator end) {
unsigned int max_value = 0;

for(; begin != end; ++begin) {
if (max_value < *begin) {

max_value = *begin;
}

}

return max_value;
}

32



Questions?

33



The algorithm Library

Surely somebody smarter already implemented all the common
algorithms for us, right?
Yes! The algorithm library
These functions are designed to work with various containers like
vectors, arrays, lists, etc., and help in performing tasks efficiently
without the need to write the algorithms from scratch each time
Don’t forget to #include <algorithm>

34



Exercise "The algorithm Library"

Open "The algorithm Library" on code expert
Think about how you would approach the problem
Implement a solution (optionally in groups)

35



Exercise "The algorithm Library" (Solution)

// ...

int largest_element = *std::max_element(vec.begin(), vec.end());

// ...

std::sort(vec.begin(), vec.end());

// ...

36



Questions?

37



7. Outro

38



General Questions?

39



Till next time!

Cheers!

40


	Feedback on codeexpertcolorcode expert 
	Important Update regarding Feedback
	Objectives
	Classes and Operator Overloading
	Exercise "Tribool"
	Iterators
	Outro

