Exercise Session W11
Computer Science (CSE & CBB & Statistics) — AS 23

Overview

n.ethz.ch/~agavranovic

Today's Agenda

Follow-up

Feedback on code expert
Objectives

& VS *

References vs Pointers

this->

Dynamic Data Structures & Iterators
Outro

1. Follow-up

Follow-up from previous exercise sessions

Regarding PVK

Follow-up from previous exercise sessions

Regarding PVK

m By now you should all have received an e-mail from VMP informing you
about the PVKs

2. Feedback on code expert

Specific things regarding tasks

E8:T1: "Vector and Matrix Operations"

m Pay attention to the "constness" of the function arguments

m The vectors and matrices should not be changed — should be passed
as const references

E8:T4: "Trapezoid Printing"

m Read the tasks carefully :)

m Careful with print_diamond and print_hourglass: Special cases are
required If the widths are 0, otherwise there is infinite output

Questions?

3. Objectives

[J be able to understand the differences between pointers and references
[J be able to trace and write programs with pointers

[J be able to write programs that use dynamic memory

[J be able to implement simple containers

4, & VS *

The meanings of &

The symbol & has many meanings in C++ which is confusing
It has 3 different meanings depending on its position in code:

The meanings of &

The symbol & has many meanings in C++ which is confusing
It has 3 different meanings depending on its position in code:

The meaning of &

The meanings of &

The symbol & has many meanings in C++ which is confusing
It has 3 different meanings depending on its position in code:

The meaning of &

1. as AND-operator
bool z = x && y;
' '

N
bl b‘

The meanings of &

The symbol & has many meanings in C++ which is confusing
It has 3 different meanings depending on its position in code:

The meaning of &

1. as AND-operator
bool z = x && y;

2. to declare a variable as an alias
int& y = x;

The meanings of &

The symbol & has many meanings in C++ which is confusing
It has 3 different meanings depending on its position in code:

The meaning of &
1. as AND-operator
bool z = x && y;
2. to declare a variable as an alias
int& y = x;
3. to get the address of a variable (address-operator)

int *ptr_a = &a;
G

The meanings of *

Ditto with the symbol *.
The meaning of *

The meanings of *

Ditto with the symbol *.
The meaning of *

1. as (arithmetic) multiplication-operator
Z =X *Yy;

The meanings of *

Ditto with the symbol *.

The meaning of *
1. as (arithmetic) multiplication-operator
Z =X % Yy;
2. to declare a pointer variable
int* ptr_a = &a;

The meanings of *

¢

-~

Ditto with the symbol *.
The meaning of *

0x DEAY REEP

1. as (arithmetic) multiplication-operator
Z =X % Yy;

2. to declare a pointer variable _
int* ptr_a =@,; —(—vv-d"() -

3. to access a variable via its pointer (dereference—opera:tor)
int a = *ptr_a;

—— s
¥ (0xp---F)

N———

b2

T

Questions?

5. References vs Pointers

References

void references(){
int a = 1;
int b = 2;
int& x = a;

in’f&bB_’ =% Trace program and write expected
A output, if the function is called

std::cout

<< a << " "

<< b << " "

<< x << " "

<< y << std::endl;

References

void references(){
int a = 1;
int b = 2;
int& x = a;
in’f&by = X5 Trace program and write expected
A output, if the function is called

std::cout

<< a << " " 2222
<< b << " "

<< x << " "

<< y << std::endl;

void pointers(){
int a = 1;
int b = 2;
int* x = &a;
int* y X;

Trace program and write expected
output, if the function is called

std::cout

<< a << " "

<< b << " "

<< x << " "

<< y << std::endl;

Pointers

void pointers(){
int a = 1;
- z j Za Trace program and write expected
int* y = x; output, if the function is called

1 2 0x7ffe4d1fb904 Ox7ffe4d1fb904

std::cout
< axgmn
<< b << n n ' s l
<< x << n n A
<< y << std::endl;

}

void pointers(){
int a = 1;
int b
int* x = &a;
int* y

]
N

]
»

std::cout

<< a << " "

<< b << " "

<< x << " "

<< y << std::endl;

Trace program and write expected
output, if the function is called

1 2 0x7ffe4d1fb904 0x7ffe4d1fb904

(The addresses could be differ-
ent each time when called!)

Pointers und Adressen

void ptrs_and_addresses(){

int a = 5; Trace program and write expected

int b= 7; output, if the function is called
int* x = nullptr;
X = &a;

std::cout << a << "\n";
std::cout << *x << "\n";

std::cout << x << "\n'";
std::cout << &a << "\n";

16

Pointers und Adressen

void ptrs_and_addresses(){ .
int a = 5; Trace program an(.i write expected
int b = 7; output, if the function is called
int* x = f@ullptr \ 5e— Q
X = &a; Qi.t

° 0
Yoy Al Keeo

std::cout << a << "\n"; 0x7ffe4d1£b914 L_x_—
std::cout << *x << "\n"; 0x7ffe4d1fb914 It
std::icaub ‘<< x << (N (The addresses could be differ-
std::cout << &a << "\n"; . |

) ent each time when called!)

16

Questions?

6. this->

What the f*&k is this->?

The meaning of this->
this-> has two parts

What the f*x&Kk is this->?

The meaning of this-> /\

S P S
this-> has two parts Class
B this

m is a pointer to the current object (class or struct)

What the f*x&Kk is this->?

The meaning of this->
this-> has two parts
B this

m is a pointer to the current object (class or struct)
m so itis of type T*

What the f*x&Kk is this->?

The meaning of this->
this-> has two parts
B this

m is a pointer to the current object (class or struct)
m so itis of type T*

>

m is a cool looking operator

What the f*x&Kk is this->?

The meaning of this->
this-> has two parts
B this

m is a pointer to the current object (class or struct)
m so itis of type T*
. o i s
’A&* ed Q"’“"
m is a cool looking operator .l
® this->member_element is equivalent tolx(this) .member_element
m the arrow operator dereferences a pointer to an object in order to access

one of its members (functions or variables)

7. Dynamic Data Structures & Iterators

"Our-List" Primer |

We will implement (parts of) our own linked-list

21

"Our-List" Primer |

We will implement (parts of) our own linked-list

& 4| e&&— 5 &— 1| &—— -

HEA VALUE | NEXT VALUE | NEXT VALUE | NEXT
(3] €ad £2) - &)

m A list is comprised of "blocks" of 1nodes with one 1node always
pointing to the next

21

"Our-List" Primer |

We will implement (parts of) our own linked-list

..__

4

o —

5

..__

]- ..—-———.» EE

HEAD

VALUE

NEXT

VALUE

NEXT

VALUE | NEXT

m A list is comprised of "blocks" of 1nodes with one 1node always
pointing to the next

m But what even is an 1lnode?

(i'ﬂr vl |
Medex NF‘t

21

"Our-List" Primer |

We will implement (parts of) our own linked-list

HEAD VALUE | NEXT VALUE | NEXT

VALUE | NEXT

m A list is comprised of "blocks" of 1nodes with one 1node always
pointing to the next

m But what even is an 1lnode?

m Answer: A struct made up of an int value and an lnode-pointer

21

"Our-List" Primer |

First task: Implement a constructor that initializes a new list with iterators

22

"Our-List" Primer |

First task: Implement a constructor that initializes a new list with iterators
m We want to be able to write our_list my_list(begin, end);

22

"Our-List" Primer |

First task: Implement a constructor that initializes a new list with iterators

m We want to be able to write our_list my_list(begin, end);
m |dea: Use the iterators to add new 1lnodes to the list

22

"Our-List" Primer |

First task: Implement a constructor that initializes a new list with iterators

m We want to be able to write our_list my_list(begin, end);
m |dea: Use the iterators to add new 1lnodes to the list
m How can we access the different elements?

22

"Our-List" Primer |

First task: Implement a constructor that initializes a new list with iterators

m We want to be able to write our_list my_list(begin, end);
m |dea: Use the iterators to add new 1lnodes to the list
m How can we access the different elements?

m Access to Value of the 1node that the iterator is pointing to:
*it €— rtdhmn Int valo

22

"Our-List" Primer |

First task: Implement a constructor that initializes a new list with iterators

m We want to be able to write our_list my_list(begin, end);
m |dea: Use the iterators to add new 1lnodes to the list
m How can we access the different elements?

m Access to Value of the 1node that the iterator is pointing to:
*it

nod@ext
R

m Next 1node in line:

22

"Our-List" Primer |

First task: Implement a constructor that initializes a new list with iterators

m We want to be able to write our_list my_list(begin, end);
m |dea: Use the iterators to add new 1lnodes to the list
m How can we access the different elements?

m Access to Value of the 1node that the iterator is pointing to:
*it

m Next 1node in line:

new lnode:
new lnode{value, pointep}
a Tx*

m Create a pointer tq

Remember: new T

22

Exercise "our list::init"

23

Exercise "our list::init"

m Open "our list::init" on code expert

23

Exercise "our list::init"

m Open "our list::init" on code expert
m Think about how you would approach the problem with pen and paper

23

Exercise "our_list::init"
Onc_tn bt s o o) () &— Tobp

—_—

m Open "our _list::init" on code expert i /
m Think about how you would approach the problem with pen and paper

] Ir{ﬂement a §olyt€on (optionally in groups)
\V\o*'d' d;

s"‘rhcl- \noele { D'_‘l} D e

vat vele$

5 lwede & nexé;
" \)

23

Exercise "our list::init" (Solution)

—GF— a0 Uy

("‘8' ,\.M)
PTE

Y D-—t) D-/) D -> ;.\.;:

24

Exercise "our list::init" (Solution)
conshneor n— 0=

our_list::our_list (:our_llst: :const_iterator (begin /’ /

our_list::const_iterator {
this->head =.nullptr; // Init head (safely)
if (begin == end) {return;} // Case: empty list

our_list::const_iterator ji = begin; (L/ Adding first element;
—} this->head = Dew 1lnode {@,(nullptr };

ATIEE Wede * g E'" /A

lnode *node = this->head; . L..T\T

for (; it != end; ++it) { // Adding remainig elements

node->next =$ew lnode { *it, nullptr }} node

(node = node->next;

}
}

24

Questions?

25

"Our-List" Primer Il

Second task: Implement a method of the class "our_list" that swaps a
node with the next one

26

"Our-List" Primer Il

Second task: Implement a method of the class "our_list" that swaps a
node with the next one

m You can use a similar approach to other swap functions (i.e. with a
temporary variable tmp)

26

"Our-List" Primer Il

Second task: Implement a method of the class "our_list" that swaps a
node with the next one
m You can use a similar approach to other swap functions (i.e. with a
temporary variable tmp)
m However:

m Use Pointers
m What happens in the case of 0 (when the head pointer should be

swapped)?
m How can you avoid suddenly accessing memory that is not yours?

26

Exercise "our_list: :swap"

27

Exercise "our_list: :swap"

m Open "our_list::swap" on code expert

27

Exercise "our list: :swap"

m Open "our_list::swap" on code expert
m Think about how you would approach the problem with pen and paper

27

Exercise "our list: :swap"

m Open "our_list::swap" on code expert
m Think about how you would approach the problem with pen and paper
m Implement a solution (optionally in groups)

27

Exercise "our list::swap" (Solution)

28

Exercise "our_list::swap" (Solution)

void our_list::swap(unsigned int index) {
if (index == 0) {

assert(this->head != nullptr);
assert(this->head->next != nullptr);

lnode* tmp = this->head->next;
this->head->next = this->head->next->next;
tmp->next = this->head;

this->head = tmp;

28

Exercise "our_list::swap" (Solution)

else { 1node* prev = nullptr;
lnode* curr = this->head;

while (index > 0) { // Find the element
prev = curr;
curr = curr->next;

—--index;
}
assert(curr != nullptr);
assert (curr->next != nullptr);
lnode* tmp = curr->next; // Swap with the next one

curr->next curr->next->next;
tmp->next = curr;
prev->next = tmp; }}// two '}' to close function

29

Questions?

30

8. Outro

General Questions?

Ta: TASE 3 Dynanie Gueme’
~5 \n X “V\v«r‘iu—\"—‘nﬂ\' 0{- Mo el

“Rrax" aad “Vasd” el Yo
Ala ?o\q'\vs LY od sk,
PET e Bex b Vst viodes!

32

General Questions?

Ta: TASE 3 Dynanie Gueme’
~5 \n X “V\v«r‘iu—\"—‘nﬂ\' 0{- Mo el

“Rrax" aad “Vasd” el Yo
Ala ?o\q'\vs LY od sk,
PET e Bex b Vst viodes!

32

ey, lec's get
togetber and parcy!

On Gbursday, 7cb of
December from 19:00
t0 23:00 act CAB D 21

yours truly,
W

Till next time!

Cheers!

33

