
Exercise Session W11
Computer Science (CSE & CBB & Statistics) – AS 23



Overview

n.ethz.ch/~agavranovic

Today’s Agenda
Follow-up
Feedback on code expert
Objectives
& vs *
References vs Pointers
this->
Dynamic Data Structures & Iterators
Outro

1



1. Follow-up

2



Follow-up from previous exercise sessions

Regarding PVK

By now you should all have received an e-mail from VMP informing you
about the PVKs

3



Follow-up from previous exercise sessions

Regarding PVK
By now you should all have received an e-mail from VMP informing you
about the PVKs

3



2. Feedback on code expert

4



Specific things regarding code expert tasks

E8:T1: "Vector and Matrix Operations"
Pay attention to the "constness" of the function arguments
The vectors and matrices should not be changed æ should be passed
as const references

E8:T4: "Trapezoid Printing"
Read the tasks carefully :)
Careful with print_diamond and print_hourglass: Special cases are
required if the widths are 0, otherwise there is infinite output

5



Questions?

6



3. Objectives

7



Objectives

⇤ be able to understand the di�erences between pointers and references
⇤ be able to trace and write programs with pointers
⇤ be able to write programs that use dynamic memory
⇤ be able to implement simple containers

8



4. & vs *

9



The meanings of &

The symbol & has many meanings in C++ which is confusing
It has 3 di�erent meanings depending on its position in code:

The meaning of &
1. as AND-operator

bool z = x && y;
2. to declare a variable as an alias

int& y = x;
3. to get the address of a variable (address-operator)

int *ptr_a = &a;

10



The meanings of &

The symbol & has many meanings in C++ which is confusing
It has 3 di�erent meanings depending on its position in code:
The meaning of &

1. as AND-operator
bool z = x && y;

2. to declare a variable as an alias
int& y = x;

3. to get the address of a variable (address-operator)
int *ptr_a = &a;

10



The meanings of &

The symbol & has many meanings in C++ which is confusing
It has 3 di�erent meanings depending on its position in code:
The meaning of &
1. as AND-operator

bool z = x && y;

2. to declare a variable as an alias
int& y = x;

3. to get the address of a variable (address-operator)
int *ptr_a = &a;

10



The meanings of &

The symbol & has many meanings in C++ which is confusing
It has 3 di�erent meanings depending on its position in code:
The meaning of &
1. as AND-operator

bool z = x && y;
2. to declare a variable as an alias

int& y = x;

3. to get the address of a variable (address-operator)
int *ptr_a = &a;

10



The meanings of &

The symbol & has many meanings in C++ which is confusing
It has 3 di�erent meanings depending on its position in code:
The meaning of &
1. as AND-operator

bool z = x && y;
2. to declare a variable as an alias

int& y = x;
3. to get the address of a variable (address-operator)

int *ptr_a = &a;

10



The meanings of *

Ditto with the symbol *.
The meaning of *

1. as (arithmetic) multiplication-operator
z = x * y;

2. to declare a pointer variable
int* ptr_a = &a;

3. to access a variable via its pointer (dereference-operator)
int a = *ptr_a;

11



The meanings of *

Ditto with the symbol *.
The meaning of *
1. as (arithmetic) multiplication-operator

z = x * y;

2. to declare a pointer variable
int* ptr_a = &a;

3. to access a variable via its pointer (dereference-operator)
int a = *ptr_a;

11



The meanings of *

Ditto with the symbol *.
The meaning of *
1. as (arithmetic) multiplication-operator

z = x * y;
2. to declare a pointer variable

int* ptr_a = &a;

3. to access a variable via its pointer (dereference-operator)
int a = *ptr_a;

11



The meanings of *

Ditto with the symbol *.
The meaning of *
1. as (arithmetic) multiplication-operator

z = x * y;
2. to declare a pointer variable

int* ptr_a = &a;
3. to access a variable via its pointer (dereference-operator)

int a = *ptr_a;

11



Questions?

12



5. References vs Pointers

13



References

void references(){
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;

std::cout
<< a << " "
<< b << " "
<< x << " "
<< y << std::endl;

}

Trace program and write expected
output, if the function is called

2 2 2 2

14



References

void references(){
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;

std::cout
<< a << " "
<< b << " "
<< x << " "
<< y << std::endl;

}

Trace program and write expected
output, if the function is called

2 2 2 2

14



Pointers

void pointers(){
int a = 1;
int b = 2;
int* x = &a;
int* y = x;

std::cout
<< a << " "
<< b << " "
<< x << " "
<< y << std::endl;

}

Trace program and write expected
output, if the function is called

1 2 0x7ffe4d1fb904 0x7ffe4d1fb904

(The addresses could be di�er-
ent each time when called!)

15



Pointers

void pointers(){
int a = 1;
int b = 2;
int* x = &a;
int* y = x;

std::cout
<< a << " "
<< b << " "
<< x << " "
<< y << std::endl;

}

Trace program and write expected
output, if the function is called

1 2 0x7ffe4d1fb904 0x7ffe4d1fb904

(The addresses could be di�er-
ent each time when called!)

15



Pointers

void pointers(){
int a = 1;
int b = 2;
int* x = &a;
int* y = x;

std::cout
<< a << " "
<< b << " "
<< x << " "
<< y << std::endl;

}

Trace program and write expected
output, if the function is called

1 2 0x7ffe4d1fb904 0x7ffe4d1fb904

(The addresses could be di�er-
ent each time when called!)

15



Pointers und Adressen

void ptrs_and_addresses(){
int a = 5;
int b = 7;

int* x = nullptr;
x = &a;

std::cout << a << "\n";
std::cout << *x << "\n";

std::cout << x << "\n";
std::cout << &a << "\n";

}

Trace program and write expected
output, if the function is called

5
5
0x7ffe4d1fb914
0x7ffe4d1fb914

(The addresses could be di�er-
ent each time when called!)

16



Pointers und Adressen

void ptrs_and_addresses(){
int a = 5;
int b = 7;

int* x = nullptr;
x = &a;

std::cout << a << "\n";
std::cout << *x << "\n";

std::cout << x << "\n";
std::cout << &a << "\n";

}

Trace program and write expected
output, if the function is called

5
5
0x7ffe4d1fb914
0x7ffe4d1fb914

(The addresses could be di�er-
ent each time when called!)

16



Questions?

17



6. this->

18



What the f*&k is this->?

The meaning of this->
this-> has two parts

this

is a pointer to the current object (class or struct)
so it is of type T*

->

is a cool looking operator
this->member_element is equivalent to *(this).member_element
the arrow operator dereferences a pointer to an object in order to access
one of its members (functions or variables)

19



What the f*&k is this->?

The meaning of this->
this-> has two parts

this

is a pointer to the current object (class or struct)

so it is of type T*

->

is a cool looking operator
this->member_element is equivalent to *(this).member_element
the arrow operator dereferences a pointer to an object in order to access
one of its members (functions or variables)

19



What the f*&k is this->?

The meaning of this->
this-> has two parts

this

is a pointer to the current object (class or struct)
so it is of type T*

->

is a cool looking operator
this->member_element is equivalent to *(this).member_element
the arrow operator dereferences a pointer to an object in order to access
one of its members (functions or variables)

19



What the f*&k is this->?

The meaning of this->
this-> has two parts

this

is a pointer to the current object (class or struct)
so it is of type T*

->

is a cool looking operator

this->member_element is equivalent to *(this).member_element
the arrow operator dereferences a pointer to an object in order to access
one of its members (functions or variables)

19



What the f*&k is this->?

The meaning of this->
this-> has two parts

this

is a pointer to the current object (class or struct)
so it is of type T*

->

is a cool looking operator
this->member_element is equivalent to *(this).member_element
the arrow operator dereferences a pointer to an object in order to access
one of its members (functions or variables)

19



7. Dynamic Data Structures & Iterators

20



"Our-List" Primer I

We will implement (parts of) our own linked-list

A list is comprised of "blocks" of lnodes with one lnode always
pointing to the next
But what even is an lnode?
Answer: A struct made up of an int value and an lnode-pointer

21



"Our-List" Primer I

We will implement (parts of) our own linked-list

A list is comprised of "blocks" of lnodes with one lnode always
pointing to the next

But what even is an lnode?
Answer: A struct made up of an int value and an lnode-pointer

21



"Our-List" Primer I

We will implement (parts of) our own linked-list

A list is comprised of "blocks" of lnodes with one lnode always
pointing to the next
But what even is an lnode?

Answer: A struct made up of an int value and an lnode-pointer

21



"Our-List" Primer I

We will implement (parts of) our own linked-list

A list is comprised of "blocks" of lnodes with one lnode always
pointing to the next
But what even is an lnode?
Answer: A struct made up of an int value and an lnode-pointer

21



"Our-List" Primer I
First task: Implement a constructor that initializes a new list with iterators

We want to be able to write our_list my_list(begin, end);
Idea: Use the iterators to add new lnodes to the list
How can we access the di�erent elements?

Access to Value of the lnode that the iterator is pointing to:
*it

Next lnode in line:
node->next

Create a pointer to a new lnode:
new lnode{value, pointer}

Remember: new T returns a T*

22



"Our-List" Primer I
First task: Implement a constructor that initializes a new list with iterators

We want to be able to write our_list my_list(begin, end);

Idea: Use the iterators to add new lnodes to the list
How can we access the di�erent elements?

Access to Value of the lnode that the iterator is pointing to:
*it

Next lnode in line:
node->next

Create a pointer to a new lnode:
new lnode{value, pointer}

Remember: new T returns a T*

22



"Our-List" Primer I
First task: Implement a constructor that initializes a new list with iterators

We want to be able to write our_list my_list(begin, end);
Idea: Use the iterators to add new lnodes to the list

How can we access the di�erent elements?

Access to Value of the lnode that the iterator is pointing to:
*it

Next lnode in line:
node->next

Create a pointer to a new lnode:
new lnode{value, pointer}

Remember: new T returns a T*

22



"Our-List" Primer I
First task: Implement a constructor that initializes a new list with iterators

We want to be able to write our_list my_list(begin, end);
Idea: Use the iterators to add new lnodes to the list
How can we access the di�erent elements?

Access to Value of the lnode that the iterator is pointing to:
*it

Next lnode in line:
node->next

Create a pointer to a new lnode:
new lnode{value, pointer}

Remember: new T returns a T*

22



"Our-List" Primer I
First task: Implement a constructor that initializes a new list with iterators

We want to be able to write our_list my_list(begin, end);
Idea: Use the iterators to add new lnodes to the list
How can we access the di�erent elements?

Access to Value of the lnode that the iterator is pointing to:
*it

Next lnode in line:
node->next

Create a pointer to a new lnode:
new lnode{value, pointer}

Remember: new T returns a T*

22



"Our-List" Primer I
First task: Implement a constructor that initializes a new list with iterators

We want to be able to write our_list my_list(begin, end);
Idea: Use the iterators to add new lnodes to the list
How can we access the di�erent elements?

Access to Value of the lnode that the iterator is pointing to:
*it

Next lnode in line:
node->next

Create a pointer to a new lnode:
new lnode{value, pointer}

Remember: new T returns a T*

22



"Our-List" Primer I
First task: Implement a constructor that initializes a new list with iterators

We want to be able to write our_list my_list(begin, end);
Idea: Use the iterators to add new lnodes to the list
How can we access the di�erent elements?

Access to Value of the lnode that the iterator is pointing to:
*it

Next lnode in line:
node->next

Create a pointer to a new lnode:
new lnode{value, pointer}

Remember: new T returns a T*

22



Exercise "our_list::init"

Open "our_list::init" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

23



Exercise "our_list::init"

Open "our_list::init" on code expert

Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

23



Exercise "our_list::init"

Open "our_list::init" on code expert
Think about how you would approach the problem with pen and paper

Implement a solution (optionally in groups)

23



Exercise "our_list::init"

Open "our_list::init" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

23



Exercise "our_list::init" (Solution)

our_list::our_list(our_list::const_iterator begin,
our_list::const_iterator end) {

this->head = nullptr; // Init head (safely)

if (begin == end) {return;} // Case: empty list

our_list::const_iterator it = begin; // Adding first element
this->head = new lnode { *it, nullptr };
++it;
lnode *node = this->head;

for (; it != end; ++it) { // Adding remainig elements
node->next = new lnode { *it, nullptr };
node = node->next;

}
}

24



Exercise "our_list::init" (Solution)

our_list::our_list(our_list::const_iterator begin,
our_list::const_iterator end) {

this->head = nullptr; // Init head (safely)

if (begin == end) {return;} // Case: empty list

our_list::const_iterator it = begin; // Adding first element
this->head = new lnode { *it, nullptr };
++it;
lnode *node = this->head;

for (; it != end; ++it) { // Adding remainig elements
node->next = new lnode { *it, nullptr };
node = node->next;

}
}

24



Questions?

25



"Our-List" Primer II

Second task: Implement a method of the class "our_list" that swaps a
node with the next one

You can use a similar approach to other swap functions (i.e. with a
temporary variable tmp)
However:

Use Pointers
What happens in the case of 0 (when the head pointer should be
swapped)?
How can you avoid suddenly accessing memory that is not yours?

26



"Our-List" Primer II

Second task: Implement a method of the class "our_list" that swaps a
node with the next one

You can use a similar approach to other swap functions (i.e. with a
temporary variable tmp)

However:

Use Pointers
What happens in the case of 0 (when the head pointer should be
swapped)?
How can you avoid suddenly accessing memory that is not yours?

26



"Our-List" Primer II

Second task: Implement a method of the class "our_list" that swaps a
node with the next one

You can use a similar approach to other swap functions (i.e. with a
temporary variable tmp)
However:

Use Pointers
What happens in the case of 0 (when the head pointer should be
swapped)?
How can you avoid suddenly accessing memory that is not yours?

26



Exercise "our_list::swap"

Open "our_list::swap" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

27



Exercise "our_list::swap"

Open "our_list::swap" on code expert

Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

27



Exercise "our_list::swap"

Open "our_list::swap" on code expert
Think about how you would approach the problem with pen and paper

Implement a solution (optionally in groups)

27



Exercise "our_list::swap"

Open "our_list::swap" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

27



Exercise "our_list::swap" (Solution)

void our_list::swap(unsigned int index) {

if (index == 0) {

assert(this->head != nullptr);
assert(this->head->next != nullptr);

lnode* tmp = this->head->next;
this->head->next = this->head->next->next;
tmp->next = this->head;
this->head = tmp;

}

28



Exercise "our_list::swap" (Solution)

void our_list::swap(unsigned int index) {

if (index == 0) {

assert(this->head != nullptr);
assert(this->head->next != nullptr);

lnode* tmp = this->head->next;
this->head->next = this->head->next->next;
tmp->next = this->head;
this->head = tmp;

}

28



Exercise "our_list::swap" (Solution)

else { lnode* prev = nullptr;
lnode* curr = this->head;

while (index > 0) { // Find the element
prev = curr;
curr = curr->next;
--index;

}

assert(curr != nullptr);
assert(curr->next != nullptr);

lnode* tmp = curr->next; // Swap with the next one
curr->next = curr->next->next;
tmp->next = curr;
prev->next = tmp; }}// two �}� to close function

29



Questions?

30



8. Outro

31



General Questions?

32



General Questions?

32





Till next time!

Cheers!

33


