
Exercise Session W12
Computer Science (CSE & CBB & Statistics) – AS 23



Overview

Today’s Agenda
Follow-up
Feedback on code expert
Objectives
Memory Management
Exercise "Box"
Common Issues with Pointers
Shared and Unique Pointers
Muddiest Point
Outro

n.ethz.ch/~agavranovic

1



1. Follow-up

2



Follow-up from previous exercise sessions

a visualized write-up for
our_list is now avaiable on
Lily’s webpage!

rwko.ch/lily

3



2. Feedback on code expert

4



General things regarding code expert

All of you have improved a lot - well done!

5



General things regarding code expert

All of you have improved a lot - well done!

5



Specific things regarding code expert : else

Why do so almost all of you use
format the else like this?

if(condition){

something();

}

else {

somehing_else();

}

or even pythonesque

if(condition){

something();

else

somehing_else();

(It’s not wrong. Just weird)

6



Specific things regarding code expert : else

Why do so almost all of you use
format the else like this?

if(condition){

something();

}

else {

somehing_else();

}

or even pythonesque

if(condition){

something();

else

somehing_else();

(It’s not wrong. Just weird)

6



Specific things regarding code expert : else

Consider formatting them like this

if(condition){

something();

} else {

somehing_else();

}

7



Specific things regarding code expert : else

If your if-statement ends in a return, then you can leave out the else

entirely! (This happens often with recursive functions!)

void recFoo(std::vector<unsigned int> numbers){

// BASE CASE

if(condition){

return something();

}

// LONGER RECURSIVE CASE

somehing_else0();

somehing_else1();

somehing_else2();

somehing_else3();

// ...

}

8



Specific things regarding code expert : else
If your if-statement ends in a return, then you can leave out the else

entirely!

(This happens often with recursive functions!)

void recFoo(std::vector<unsigned int> numbers){

// BASE CASE

if(condition){

return something();

}

// LONGER RECURSIVE CASE

somehing_else0();

somehing_else1();

somehing_else2();

somehing_else3();

// ...

}

8



Specific things regarding code expert : else
If your if-statement ends in a return, then you can leave out the else

entirely! (This happens often with recursive functions!)

void recFoo(std::vector<unsigned int> numbers){

// BASE CASE

if(condition){

return something();

}

// LONGER RECURSIVE CASE

somehing_else0();

somehing_else1();

somehing_else2();

somehing_else3();

// ...

}

8



Specific things regarding code expert : else
If your if-statement ends in a return, then you can leave out the else

entirely! (This happens often with recursive functions!)

void recFoo(std::vector<unsigned int> numbers){

// BASE CASE

if(condition){

return something();

}

// LONGER RECURSIVE CASE

somehing_else0();

somehing_else1();

somehing_else2();

somehing_else3();

// ...

}

8



Specific things regarding code expert
E8:T2: "Recursive function analysis"

the grading scheme is pretty strict on this one (one wrong PRE/POST
means 1/3 points, only perfect solutions get 3/3)

Always consider input 0
some of you struggle with the formatting of TeX-stu�. always put math
inside dollar signs on each end
Check the master solution for a more standard phrasing for
"termination proofs/arguments" (that is more likely to give points at
the exam)
The magic word in these "proofs" is "monotonically decreasing to the
base case"
Returning is not the same as printing

9



Specific things regarding code expert
E8:T2: "Recursive function analysis"

the grading scheme is pretty strict on this one (one wrong PRE/POST
means 1/3 points, only perfect solutions get 3/3)
Always consider input 0

some of you struggle with the formatting of TeX-stu�. always put math
inside dollar signs on each end
Check the master solution for a more standard phrasing for
"termination proofs/arguments" (that is more likely to give points at
the exam)
The magic word in these "proofs" is "monotonically decreasing to the
base case"
Returning is not the same as printing

9



Specific things regarding code expert
E8:T2: "Recursive function analysis"

the grading scheme is pretty strict on this one (one wrong PRE/POST
means 1/3 points, only perfect solutions get 3/3)
Always consider input 0
some of you struggle with the formatting of TeX-stu�. always put math
inside dollar signs on each end

Check the master solution for a more standard phrasing for
"termination proofs/arguments" (that is more likely to give points at
the exam)
The magic word in these "proofs" is "monotonically decreasing to the
base case"
Returning is not the same as printing

9



Specific things regarding code expert
E8:T2: "Recursive function analysis"

the grading scheme is pretty strict on this one (one wrong PRE/POST
means 1/3 points, only perfect solutions get 3/3)
Always consider input 0
some of you struggle with the formatting of TeX-stu�. always put math
inside dollar signs on each end
Check the master solution for a more standard phrasing for
"termination proofs/arguments" (that is more likely to give points at
the exam)

The magic word in these "proofs" is "monotonically decreasing to the
base case"
Returning is not the same as printing

9



Specific things regarding code expert
E8:T2: "Recursive function analysis"

the grading scheme is pretty strict on this one (one wrong PRE/POST
means 1/3 points, only perfect solutions get 3/3)
Always consider input 0
some of you struggle with the formatting of TeX-stu�. always put math
inside dollar signs on each end
Check the master solution for a more standard phrasing for
"termination proofs/arguments" (that is more likely to give points at
the exam)
The magic word in these "proofs" is "monotonically decreasing to the
base case"

Returning is not the same as printing

9



Specific things regarding code expert
E8:T2: "Recursive function analysis"

the grading scheme is pretty strict on this one (one wrong PRE/POST
means 1/3 points, only perfect solutions get 3/3)
Always consider input 0
some of you struggle with the formatting of TeX-stu�. always put math
inside dollar signs on each end
Check the master solution for a more standard phrasing for
"termination proofs/arguments" (that is more likely to give points at
the exam)
The magic word in these "proofs" is "monotonically decreasing to the
base case"
Returning is not the same as printing

9



Specific things regarding code expert

E8:T3: "Bitstrings up to n"
Don’t feel bad if you didn’t get the TA-points because of the
computationally "terrible" implementation (the grading scheme forced
me)

I highly recommend studying the master solution since it’s very cool
and concise and shows o� a couple nice ways to use std::strings

No recursion =∆ No TA-points (again, grading scheme forced me)

10



Specific things regarding code expert

E8:T3: "Bitstrings up to n"
Don’t feel bad if you didn’t get the TA-points because of the
computationally "terrible" implementation (the grading scheme forced
me)
I highly recommend studying the master solution since it’s very cool
and concise and shows o� a couple nice ways to use std::strings

No recursion =∆ No TA-points (again, grading scheme forced me)

10



Specific things regarding code expert

E8:T3: "Bitstrings up to n"
Don’t feel bad if you didn’t get the TA-points because of the
computationally "terrible" implementation (the grading scheme forced
me)
I highly recommend studying the master solution since it’s very cool
and concise and shows o� a couple nice ways to use std::strings

No recursion =∆ No TA-points (again, grading scheme forced me)

10



Specific things regarding code expert

E8:T4: "Trapezoid Printing"
No recursion =∆ No TA-points (again, grading scheme forced me)

Make sure to check the output of your code yourself and not rely fully
on the autograder

11



Specific things regarding code expert

E8:T4: "Trapezoid Printing"
No recursion =∆ No TA-points (again, grading scheme forced me)
Make sure to check the output of your code yourself and not rely fully
on the autograder

11



Specific things regarding code expert
E9:T1: "Reverse Digits"

You can output expressions directly instead of saving them in a variable
first, i.e. instead of

int rest = n%10;

std::cout << rest;

int new_n = (n-rest)/10;

reverse(new_n);

you can do the following:

std::cout << n%10;

reverse(n/10);

12



Questions?

13



3. Objectives

14



Objectives

⇤ be able to trace code that uses new, delete, copy constructors, and
destructors.

⇤ understand the common problems related to incorrect use of dynamic
memory: dangling pointers, double-free, use-after-free

⇤ be able to define and use shared and unique pointers

15



4. Memory Management

16



new and delete

Never forget. . .

For each new a delete

Constructor, Copy-Constructor, Destructor
Are just functions which are called at certain events
Must be public

17



new and delete

Never forget. . .

For each new a delete

Constructor, Copy-Constructor, Destructor

Are just functions which are called at certain events
Must be public

17



new and delete

Never forget. . .

For each new a delete

Constructor, Copy-Constructor, Destructor
Are just functions which are called at certain events

Must be public

17



new and delete

Never forget. . .

For each new a delete

Constructor, Copy-Constructor, Destructor
Are just functions which are called at certain events
Must be public

17



Constructor

Constructor
Called when

an object of a class/struct is constructed
We can give the constructor arguments in order to initialize the object
as we want
There can be multiple constructors, e.g. for di�erent types. The
computer then infers the correct type. For example:

personClass Person001(142.0f);

personClass Person161(45);

More on this: cppreference link

18



Constructor

Constructor
Called when an object of a class/struct is constructed

We can give the constructor arguments in order to initialize the object
as we want
There can be multiple constructors, e.g. for di�erent types. The
computer then infers the correct type. For example:

personClass Person001(142.0f);

personClass Person161(45);

More on this: cppreference link

18



Constructor

Constructor
Called when an object of a class/struct is constructed
We can give the constructor arguments in order to initialize the object
as we want

There can be multiple constructors, e.g. for di�erent types. The
computer then infers the correct type. For example:

personClass Person001(142.0f);

personClass Person161(45);

More on this: cppreference link

18



Constructor

Constructor
Called when an object of a class/struct is constructed
We can give the constructor arguments in order to initialize the object
as we want
There can be multiple constructors, e.g. for di�erent types. The
computer then infers the correct type. For example:

personClass Person001(142.0f);

personClass Person161(45);

More on this: cppreference link

18



Constructor

Constructor
Called when an object of a class/struct is constructed
We can give the constructor arguments in order to initialize the object
as we want
There can be multiple constructors, e.g. for di�erent types. The
computer then infers the correct type. For example:

personClass Person001(142.0f);

personClass Person161(45);

More on this: cppreference link

18



Constructor - Example in a class

class meineKlasse {

int a, b;

public:

const int& r; // for reading only!

// CONSTRUCTOR

meineKlasse(int i)

: a(i) // initializes r to refer to a

, b(i+5) // initializes a to the value of i

, r(a) // initializes b to the value of i+5

// ^ 4here we are using a "member initializer list"

// and if you want your constructor to do

// anything additionally, put it inside

{/*here (like in a regular function!)*/}

};

19



Constructor - Example in a class

class meineKlasse {

int a, b;

public:

const int& r; // for reading only!

// CONSTRUCTOR

meineKlasse(int i)

: a(i) // initializes r to refer to a

, b(i+5) // initializes a to the value of i

, r(a) // initializes b to the value of i+5

// ^ 4here we are using a "member initializer list"

// and if you want your constructor to do

// anything additionally, put it inside

{/*here (like in a regular function!)*/}

};

19



Member Initializer List

meineKlasse::meineKlasse()

: memberVariableEins(0) // init memberVariableEins

{ memberVariableZwei = 0; } // init memberVariableZwei

What is the di�erence between these two initializations of the member
variables?

Why do we use MILs?
const members

In some cases we want to have const members and the second option
would not work

Performance
The main reason for us is performance. The code with MILs is faster, as
it avoids unnecessary copies. We do not see these copies in the code
but they worsen the runtime/performance good video on this

20



Member Initializer List

meineKlasse::meineKlasse()

: memberVariableEins(0) // init memberVariableEins

{ memberVariableZwei = 0; } // init memberVariableZwei

What is the di�erence between these two initializations of the member
variables? Why do we use MILs?

const members
In some cases we want to have const members and the second option
would not work

Performance
The main reason for us is performance. The code with MILs is faster, as
it avoids unnecessary copies. We do not see these copies in the code
but they worsen the runtime/performance good video on this

20



Member Initializer List

meineKlasse::meineKlasse()

: memberVariableEins(0) // init memberVariableEins

{ memberVariableZwei = 0; } // init memberVariableZwei

What is the di�erence between these two initializations of the member
variables? Why do we use MILs?
const members

In some cases we want to have const members and the second option
would not work

Performance
The main reason for us is performance. The code with MILs is faster, as
it avoids unnecessary copies. We do not see these copies in the code
but they worsen the runtime/performance good video on this

20



Member Initializer List

meineKlasse::meineKlasse()

: memberVariableEins(0) // init memberVariableEins

{ memberVariableZwei = 0; } // init memberVariableZwei

What is the di�erence between these two initializations of the member
variables? Why do we use MILs?
const members

In some cases we want to have const members and the second option
would not work

Performance
The main reason for us is performance. The code with MILs is faster, as
it avoids unnecessary copies. We do not see these copies in the code
but they worsen the runtime/performance good video on this

20



Destructor

Destructor
is called when

an object of a class/struct is deconstructed. This can
happen at the end of a scope or when delete is used
is used to keep memory "clean" when an object is no longer in use

21



Destructor

Destructor
is called when an object of a class/struct is deconstructed. This can
happen

at the end of a scope or when delete is used
is used to keep memory "clean" when an object is no longer in use

21



Destructor

Destructor
is called when an object of a class/struct is deconstructed. This can
happen at the end of a scope or when delete is used

is used to keep memory "clean" when an object is no longer in use

21



Destructor

Destructor
is called when an object of a class/struct is deconstructed. This can
happen at the end of a scope or when delete is used
is used to keep memory "clean" when an object is no longer in use

21



Destructor - Example in a class

class meineKlasse {

int* value;

public:

// other -ctors and stuff go here

~meineKlasse(){

delete value; // That�s how we clean up the value which

// lies at the slot that the int-pointer is

// pointing to, instead of just deleting

// the int-pointer (avoiding "memory leaks")

}

};

22



Destructor - Example in a class

class meineKlasse {

int* value;

public:

// other -ctors and stuff go here

~meineKlasse(){

delete value; // That�s how we clean up the value which

// lies at the slot that the int-pointer is

// pointing to, instead of just deleting

// the int-pointer (avoiding "memory leaks")

}

};
22



Copy-constructor

Copy-Constructor
is called when

an object is initialized with another object of the same
class/struct
there is a default copy constructor, if we don’t declare one explicitly.
This simply makes a member-wise copy of the class/struct
lets us precisely determine how we want to copy something instead of
simply doing a shallow copy
not to be confused with the operator=, which does something very
similar

23



Copy-constructor

Copy-Constructor
is called when an object is initialized with another object of the same
class/struct

there is a default copy constructor, if we don’t declare one explicitly.
This simply makes a member-wise copy of the class/struct
lets us precisely determine how we want to copy something instead of
simply doing a shallow copy
not to be confused with the operator=, which does something very
similar

23



Copy-constructor

Copy-Constructor
is called when an object is initialized with another object of the same
class/struct
there is a default copy constructor, if we don’t declare one explicitly.
This simply makes a member-wise copy of the class/struct
lets us precisely determine how we want to copy something instead of
simply doing a shallow copy

not to be confused with the operator=, which does something very
similar

23



Copy-constructor

Copy-Constructor
is called when an object is initialized with another object of the same
class/struct
there is a default copy constructor, if we don’t declare one explicitly.
This simply makes a member-wise copy of the class/struct
lets us precisely determine how we want to copy something instead of
simply doing a shallow copy
not to be confused with the operator=, which does something very
similar

23



Shallow Copy vs. Deep Copy

24



Shallow Copy vs. Deep Copy

24



(copy-)assignment-operator (=)

Assignment-operator (=)
is called when

an object is assigned to another object of the same
class/struct
is called only after (not during) initializations
is called "assignment operator", just as with primitive types
Rule of thumb: do destructor stu� first, then copy constructor stu�
must have a return type, usually class& so that you can make chained
assigments (a = b = c = d;, d is assigned to all)

25



(copy-)assignment-operator (=)

Assignment-operator (=)
is called when an object is assigned to another object of the same
class/struct

is called only after (not during) initializations
is called "assignment operator", just as with primitive types
Rule of thumb: do destructor stu� first, then copy constructor stu�
must have a return type, usually class& so that you can make chained
assigments (a = b = c = d;, d is assigned to all)

25



(copy-)assignment-operator (=)

Assignment-operator (=)
is called when an object is assigned to another object of the same
class/struct
is called only after (not during) initializations

is called "assignment operator", just as with primitive types
Rule of thumb: do destructor stu� first, then copy constructor stu�
must have a return type, usually class& so that you can make chained
assigments (a = b = c = d;, d is assigned to all)

25



(copy-)assignment-operator (=)

Assignment-operator (=)
is called when an object is assigned to another object of the same
class/struct
is called only after (not during) initializations
is called "assignment operator", just as with primitive types

Rule of thumb: do destructor stu� first, then copy constructor stu�
must have a return type, usually class& so that you can make chained
assigments (a = b = c = d;, d is assigned to all)

25



(copy-)assignment-operator (=)

Assignment-operator (=)
is called when an object is assigned to another object of the same
class/struct
is called only after (not during) initializations
is called "assignment operator", just as with primitive types
Rule of thumb: do destructor stu� first, then copy constructor stu�

must have a return type, usually class& so that you can make chained
assigments (a = b = c = d;, d is assigned to all)

25



(copy-)assignment-operator (=)

Assignment-operator (=)
is called when an object is assigned to another object of the same
class/struct
is called only after (not during) initializations
is called "assignment operator", just as with primitive types
Rule of thumb: do destructor stu� first, then copy constructor stu�
must have a return type, usually

class& so that you can make chained
assigments (a = b = c = d;, d is assigned to all)

25



(copy-)assignment-operator (=)

Assignment-operator (=)
is called when an object is assigned to another object of the same
class/struct
is called only after (not during) initializations
is called "assignment operator", just as with primitive types
Rule of thumb: do destructor stu� first, then copy constructor stu�
must have a return type, usually class& so that

you can make chained
assigments (a = b = c = d;, d is assigned to all)

25



(copy-)assignment-operator (=)

Assignment-operator (=)
is called when an object is assigned to another object of the same
class/struct
is called only after (not during) initializations
is called "assignment operator", just as with primitive types
Rule of thumb: do destructor stu� first, then copy constructor stu�
must have a return type, usually class& so that you can make chained
assigments (a = b = c = d;, d is assigned to all)

25



operator= vs. Copy-Constructor

// our class/struct is named "Box"

Box first; // init by default constructor

Box second(first); // init by copy-constructor

Box third = first; // also init by copy-constructor

second = third; // assignment by (copy-)assignment operator

The last two cases look similar, but remember:
the (copy-)assignment-operator= only comes into action after an object has
already been initialized

26



operator= vs. Copy-Constructor

// our class/struct is named "Box"

Box first; // init by default constructor

Box second(first); // init by copy-constructor

Box third = first; // also init by copy-constructor

second = third; // assignment by (copy-)assignment operator

The last two cases look similar, but remember:
the (copy-)assignment-operator= only comes into action after an object has
already been initialized

26



Questions?

27



5. Exercise "Box"

28



Exercise "Box (copy)"

Here we’ll take a very close look at the implementation
Go to code expert and open the code example "Box (copy)"

Don’t worry about main.cpp yet, we’ll get to that
Don’t worry about std::cerr either, it’s just fancy std::cout

Let’s Code Together!

29



Exercise "Box (copy)"

Here we’ll take a very close look at the implementation
Go to code expert and open the code example "Box (copy)"
Don’t worry about main.cpp yet, we’ll get to that

Don’t worry about std::cerr either, it’s just fancy std::cout

Let’s Code Together!

29



Exercise "Box (copy)"

Here we’ll take a very close look at the implementation
Go to code expert and open the code example "Box (copy)"
Don’t worry about main.cpp yet, we’ll get to that
Don’t worry about std::cerr either, it’s just fancy std::cout

Let’s Code Together!

29



Exercise "Box (copy)"

Here we’ll take a very close look at the implementation
Go to code expert and open the code example "Box (copy)"
Don’t worry about main.cpp yet, we’ll get to that
Don’t worry about std::cerr either, it’s just fancy std::cout

Let’s Code Together!

29



Members of "Box"

Box::Box(const Box& other) {

ptr = new int(*other.ptr);

}

Box& Box::operator= (const Box& other) {

*ptr = *other.ptr;

return *this;

}

30



Members of "Box"

Box::~Box() {

delete ptr;

ptr = nullptr;

}

Box::Box(int* v) {

ptr = v;

}

int& Box::value() {

return *ptr;

}

31



Tracing test_destructor1()

void test_destructor1() {

std::cerr << "[enter] test_destructor1" << std::endl;

int a;

{

Box box(new int(1));

a = 5;

}

std::cout << "a = " << a << std::endl;

std::cerr << "[exit] test_destructor1" << std::endl;

}

32



Tracing test_destructor2()

void test_destructor2() {

std::cerr << "[enter] test_destructor2" << std::endl;

{

Box* box_ptr = new Box(new int(2));

delete box_ptr;

}

std::cerr << "[exit] test_destructor2" << std::endl;

}

33



Tracing test_copy_constructor()

void test_copy_constructor() {

std::cerr << "[enter] test_copy_constructor" << std::endl;

{

Box demo(new int(0));

Box demo_copy = demo;

demo.value() = 4;

demo_copy.value() = 5;

}

std::cerr << "[exit] test_copy_constructor" << std::endl;

}

34



Tracing test_copy_constructor()

35



Tracing test_assignment()

void test_assignment() {

std::cerr << "[enter] test_assignment" << std::endl;

{

Box demo(new int(0));

demo.value() = 3;

Box demo_copy(new int(0));

demo_copy = demo;

demo.value() = 4;

demo_copy.value() = 5;

}

std::cerr << "[exit] test_assignment" << std::endl;

}

36



Tracing test_assignment()

37



Questions?

38



6. Common Issues with Pointers

39



Dangling Pointers
What?

A dangling pointer arises when a pointer is pointing to a memory location
that has been freed or deallocated. Essentially, the pointer is pointing to a
place that is no longer valid.1

How?
This often occurs when an object is deleted or goes out of scope, but the
pointer pointing to it is not set to nullptr. As a result, the pointer still
refers to the old memory location, despite not knowing what is there now.
So?
Accessing or manipulating a dangling pointer can lead to unpredictable
behavior, crashes, or data corruption, as the memory might be reallocated
and used for something else.

1Often referred to as a Zombie
40



Dangling Pointers
What?
A dangling pointer arises when a pointer is pointing to a memory location
that has been freed or deallocated. Essentially, the pointer is pointing to a
place that is no longer valid.1

How?

This often occurs when an object is deleted or goes out of scope, but the
pointer pointing to it is not set to nullptr. As a result, the pointer still
refers to the old memory location, despite not knowing what is there now.
So?
Accessing or manipulating a dangling pointer can lead to unpredictable
behavior, crashes, or data corruption, as the memory might be reallocated
and used for something else.

1Often referred to as a Zombie
40



Dangling Pointers
What?
A dangling pointer arises when a pointer is pointing to a memory location
that has been freed or deallocated. Essentially, the pointer is pointing to a
place that is no longer valid.1

How?
This often occurs when an object is deleted or goes out of scope, but the
pointer pointing to it is not set to nullptr. As a result, the pointer still
refers to the old memory location, despite not knowing what is there now.
So?

Accessing or manipulating a dangling pointer can lead to unpredictable
behavior, crashes, or data corruption, as the memory might be reallocated
and used for something else.

1Often referred to as a Zombie
40



Dangling Pointers
What?
A dangling pointer arises when a pointer is pointing to a memory location
that has been freed or deallocated. Essentially, the pointer is pointing to a
place that is no longer valid.1

How?
This often occurs when an object is deleted or goes out of scope, but the
pointer pointing to it is not set to nullptr. As a result, the pointer still
refers to the old memory location, despite not knowing what is there now.
So?
Accessing or manipulating a dangling pointer can lead to unpredictable
behavior, crashes, or data corruption, as the memory might be reallocated
and used for something else.

1Often referred to as a Zombie
40



Double-Free

What?

Double-free occurs when delete is called twice on the same memory
allocation.

How?
This often occurs in complex programs where memory management is
handled in multiple places, leading to confusion about who owns the
memory.

So?
Freeing memory twice can corrupt the memory allocation metadata,
potentially leading to memory leaks, program crashes, or other erratic
behavior.

41



Double-Free

What?
Double-free occurs when delete is called twice on the same memory
allocation.

How?

This often occurs in complex programs where memory management is
handled in multiple places, leading to confusion about who owns the
memory.

So?
Freeing memory twice can corrupt the memory allocation metadata,
potentially leading to memory leaks, program crashes, or other erratic
behavior.

41



Double-Free

What?
Double-free occurs when delete is called twice on the same memory
allocation.

How?
This often occurs in complex programs where memory management is
handled in multiple places, leading to confusion about who owns the
memory.

So?

Freeing memory twice can corrupt the memory allocation metadata,
potentially leading to memory leaks, program crashes, or other erratic
behavior.

41



Double-Free

What?
Double-free occurs when delete is called twice on the same memory
allocation.

How?
This often occurs in complex programs where memory management is
handled in multiple places, leading to confusion about who owns the
memory.

So?
Freeing memory twice can corrupt the memory allocation metadata,
potentially leading to memory leaks, program crashes, or other erratic
behavior.

41



Use-After-Free

What?

Use-after-free is a situation where a program continues to use a pointer
after it has freed the memory it points to.

How?
This can happen if the program does not set the pointer to nullptr after
freeing it, or if there are copies of the pointer that were not updated.

So?
Since the freed memory might be reallocated for other purposes, using it
can lead to data corruption, unpredictable program behavior, or security
vulnerabilities.

42



Use-After-Free

What?
Use-after-free is a situation where a program continues to use a pointer
after it has freed the memory it points to.

How?

This can happen if the program does not set the pointer to nullptr after
freeing it, or if there are copies of the pointer that were not updated.

So?
Since the freed memory might be reallocated for other purposes, using it
can lead to data corruption, unpredictable program behavior, or security
vulnerabilities.

42



Use-After-Free

What?
Use-after-free is a situation where a program continues to use a pointer
after it has freed the memory it points to.

How?
This can happen if the program does not set the pointer to nullptr after
freeing it, or if there are copies of the pointer that were not updated.

So?

Since the freed memory might be reallocated for other purposes, using it
can lead to data corruption, unpredictable program behavior, or security
vulnerabilities.

42



Use-After-Free

What?
Use-after-free is a situation where a program continues to use a pointer
after it has freed the memory it points to.

How?
This can happen if the program does not set the pointer to nullptr after
freeing it, or if there are copies of the pointer that were not updated.

So?
Since the freed memory might be reallocated for other purposes, using it
can lead to data corruption, unpredictable program behavior, or security
vulnerabilities.

42



*nullptr

xkcd

43



*nullptr

xkcd

43



Questions?

44



Doomed to cause errors?

How to prevent all this?

Smart Pointers!

45



Doomed to cause errors?

How to prevent all this?

Smart Pointers!

45



Doomed to cause errors?

How to prevent all this?

Smart Pointers!

45



7. Shared and Unique Pointers

46



Smart Pointers

Smart Pointers
Smart pointers are convenient wrappers around regular pointers that
help prevent memory leaks by automatically managing memory
The smart pointers shared_ptr and unique_ptr are part of the
standard <memory> library.

47



Comparison unique_ptr vs shared_ptr

unique_ptr

A unique_ptr is used for exclusive ownership. Memory associated with a
unique_ptr is automatically deallocated when they go out of scope.

shared_ptr

A shared_ptr allows multiple pointers to share ownership of the same
resource. It counts how many pointers point to the same resource. Once the
count reaches 0, the object is deleted.

48



Comparison unique_ptr vs shared_ptr

unique_ptr

A unique_ptr is used for exclusive ownership. Memory associated with a
unique_ptr is automatically deallocated when they go out of scope.

shared_ptr

A shared_ptr allows multiple pointers to share ownership of the same
resource. It counts how many pointers point to the same resource. Once the
count reaches 0, the object is deleted.

48



Comparison unique_ptr vs shared_ptr

unique_ptr

A unique_ptr is used for exclusive ownership. Memory associated with a
unique_ptr is automatically deallocated when they go out of scope.

shared_ptr

A shared_ptr allows multiple pointers to share ownership of the same
resource. It counts how many pointers point to the same resource. Once the
count reaches 0, the object is deleted.

48



Comparison unique_ptr vs shared_ptr

unique_ptr

A unique_ptr is used for exclusive ownership. Memory associated with a
unique_ptr is automatically deallocated when they go out of scope.

shared_ptr

A shared_ptr allows multiple pointers to share ownership of the same
resource. It counts how many pointers point to the same resource. Once the
count reaches 0, the object is deleted.

48



Smart Pointers in a nutshell

49



Smart Pointers in a nutshell

49



Questions?

50



8. Muddiest Point

51



So, what are you stuck on?

Q&A Session

52



53



54



55



56



57



58



9. Outro

59



General Questions?

60



Advertisement

61



Till next time!

Cheers!

62


