Algorithms and Data Structures

Exercise Session 3

https://n.ethz.ch/~ahmala/and

Moodle Quiz Week 4

- 5 minutes
- 5 problems
- Watch out for
 - Select one or more:Select one:

Maximum Subarray Problem

- contiguous subset of an array
- Array: [-2, 1, -3, 4, -1, 2, 1, -5, 4]

Password

Password

complexity3

Maximum Subarray Problem

- contiguous subset of an array
- Array: [-2, 1, -3, 4, -1, 2, 1, -5, 4]
- Output: 6 (subarray [4, -1, 2, 1])

Naive Method

Naive Method

- Idea: Check all possible subarrays
- Algorithm
 - Generate all subarrays
 - Calculate sum for each
 - Keep track of maximum sum

Divide and Conquer

Divide and Conquer

- Idea: Recursively divide the array and combine solutions
- Algorithm:
 - Divide array into two halves
 - Recursively find maximum subarray in left and right halves
 - Find maximum subarray crossing the midpoint
 - Find maximum suffix sum of left half
 - Find maximum prefix sum of right half
 - Return the maximum of the three

Master Theorem

Theorem

If $T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$ (for constants $a > 0, b > 1, d \ge 0$), then:

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

Linear Solution

Linear Solution

- Algorithm:
 - Initialize variables for current sum and maximum sum
 - Iterate through the array once
 - At each step, decide whether to start a new subarray or extend the existing one
 - Update maximum sum if current sum is larger

Can we do better than O(n)?

https://cadmo.ethz.ch/education/lectures/HS16/DA/skript/skript.pdf#page=21

Common Mistake

EXCIDING OFFICIAL FAILE

1.1 a) I. A: $(20+1) = 1 = (0+1)^2$ I. H: For any $k \in \mathbb{N}^\circ$: $1+3+5+...+(2k+1) = (k+1)^2$ I.S: $1+3+5+...+(2k+1)+(2k+3)^{2+}(k+1)^2+(2k+3) = k^2+2k+1+2k+3 = k^2+4k+4=(k+2)^2$

Last Week's Exercise Sheet

Exercise 2.3 *O*-notation mistake. (1 point).

Let $f : \mathbb{N} \to \mathbb{R}_+$ be a function, with $f(n) \leq O(n)$. A colleague tried to prove that $e^{f(n)} \leq O(e^n)$. You found their notes, in which they start with the statement they want to show, and derive a series of equivalent statements. The notes read:

$e^{f(n)} \le O(e^n)$	 use Definition 1 on the first page 	(1)
$e^{f(n)} \leq C \cdot e^n$, for some $C > 0$	 take the log on both sides 	(2)
$\log\left(e^{f(n)}\right) \le \log\left(C \cdot e^n\right)$	$-\log(C \cdot e^n) = \log C + n$	(3)
$f(n) \le \log C + n$	$-n + \log C \le O(n)$	(4)
$f(n) \le O(n)$	- True by assumption, so we are done!	(5)

Forward & Backward Proofs

Omega Notation

Definition 1 (Ω -Notation). For $f: N \to \mathbb{R}_+$,

$$\Omega(f) \coloneqq \{g : N \to \mathbb{R}_+ \mid f \le O(g)\}.$$

We write $g \ge \Omega(f)$ instead of $g \in \Omega(f)$.

Theta Notation

Definition 2 (Θ -Notation). For $f : N \to \mathbb{R}_+$,

 $\Theta(f) \coloneqq \{g: N \to \mathbb{R}_+ \mid g \le O(f) \text{ and } f \le O(g)\}.$

We write $g = \Theta(f)$ instead of $g \in \Theta(f)$.

In other words, for two functions $f,g:N\to \mathbb{R}_+$ we have

 $g \geq \Omega(f) \Leftrightarrow f \leq O(g)$

and

 $g = \Theta(f) \Leftrightarrow g \leq O(f) \text{ and } f \leq O(g).$

Code Expert

First programming task on Friday

40% of the exam

You get one point for each passing test set. To pass both test sets correctly, your solution has to be in $O(\log n)$ time.

	Closed 2 years ago
	Solutions available
4 1379 1	Closed 2 years ago
	Closed 2 years ago Solutions available

Your task is to write a program that, given three distinct integers, returns their median. For example, if the input is 3, 1 and 2, the output is 2. You only need to implement the method "median" in the file "Main.java".

Theory will only take you so far

Peer Grading

Task 2.3