
Algorithms and Data Structures
Exercise Session 6

https://n.ethz.ch/~ahmala/and

Quiz

Fancy Binary Search aka Binary Lifting

Is the runtime of Merge Sort on the input [1,2,...,n] Θ(n) ?

Stack

● pop
● push
● top

Queue

● enqueue
● dequeue

Priority Queue

● insert
● extractMax

Binary Search Tree

● for any node’s key
○ all keys in the left subtree are smaller
○ all keys in the right subtree are larger

unbalanced :(

Binary Search Tree

● insert(p)
● delete(p)

○ p is a leaf
○ p has a single child
○ p has two children

Balanced Search Tree

● AVL Tree
○ search, insert, delete in logarithmic time

Dynamic Programming

● Memoization
○ storing the result of function call
○ return the stored result when same input occurs again

● Bottom up
○ iteratively
○ starting with the smallest subproblems and building up to the main problem

● Top down
○ recursive
○ uses memoization
○ Solves subproblems as needed
○ prone to stack overflow

Fibonacci Without Memoization

Redundant computations

Climbing Stairs

 You are climbing a staircase. It takes n steps to reach the top. Each time you can either climb 1 or 2 steps. In how
many distinct ways can you climb to the top? For example for n = 8 there are 8 distinct ways:
● 1 + 1 + 1 + 1 + 1
● 1 + 1 + 1 + 2
● 1 + 1 + 2 + 1
● 1 + 2 + 1 + 1
● 2 + 1 + 1 + 1
● 1 + 2 + 2
● 2 + 1 + 2
● 2 + 2 + 1

Recursive -- (Memoization in the next slide)

function climbStairs(n):

 if n <= 1:

 return 1

 return climbStairs(n-1) + climbStairs(n-2)

 memo = {}
 function climb(i):
 if i <= 1:
 return 1
 if i in memo:
 return memo[i]
 memo[i] = climb(i-1) + climb(i-2)
 return memo[i]

 return climb(n)

Iterative -- Bottom Up

 dp = [0] * (n + 1)

 dp[0] = dp[1] = 1

 for i in 2…n:

 dp[i] = dp[i-1] + dp[i-2]

 return dp[n]

Exercise Sheet 5

Peer Grading

Exercise 5.3

