Algorithms and Data Structures

Exercise Session 6

Fancy Binary Search aka Binary Lifting

int ans = 0O,
for (int k = /* some power of two */; k != 0; k /= 2) {
if (condition(ans + k)) {
ans += k;
}
k

|s the runtime of Merge Sort on the input [1,2....n] ©(n) ?

Below you see four sequences of snapshots, each obtained in consecutive steps of the execution of
one of the following algorithms: InsertionSort, SelectionSort, QuickSort, MergeSort, and
BubbleSort. For each sequence, write down the corresponding algorithm.

Solution:

InsertionSort (top left) — BubbleSort (top right) - MergeSort (bottom left) — SelectionSort (bottom
right).

Stack

e pop
° pUSh

Queue

e enqueue
e dequeue

Priority Queue

e insert
e extractMax

Binary Search Tree

e for any node’s key
o all keys in the left subtree are smaller
o all keys in the right subtree are larger

unbalanced :(

Binary Search Tree

e insert(p)
e delete(p)
o pisaleaf

o p has a single child
o p has two children

Balanced Search Tree

e AVL Tree

o search, insert, delete in logarithmic time

(a) Draw the tree obtained by inserting the keys 3, 8, 6, 5, 2, 9, 1 and 0 in this order into an initially
empty AVL tree. Give also all the intermediate states after every insertion and before and after each
rotation that is performed during the process.

h, [u\
i i fh,,(w) Ale)+1 Z h,[u]*{l

Rdfatwn
o)

Insert 3: Insert 8:

Insert 6:

Insert 5: Insert 2:

Insert 9: Insert 1:

Insert 0:

(b) Consider the following AVL tree.

Draw the tree obtained by deleting 6, 12, 7 and 4 in this order from this tree. Give also all the
intermediate states after every deletion and before and after each rotation that is performed during
the process.

Delete 12:

Double rotation

Delete 7:

Delete 4: Key 4 can either be replaced by its predecessor key. 3, or its successor key, 9. If key 4 is
replaced by its predecessor:

If key 4 is replaced by its successor:

Rotation

Dynamic Programming

e Memoization

o storing the result of function call
o return the stored result when same input occurs again

e Bottom up

o iteratively

o starting with the smallest subproblems and building up to the main problem
e Top down

o recursive

o uses memoization

o Solves subproblems as needed

o prone to stack overflow

Fibonacci Without Memoization

Redundant computations

7N
/N N N

/N

e AN IANY IR I

Climbing Stairs

You are climbing a staircase. It takes n steps to reach the top. Each time you can either climb 1 or 2 steps. In how
many distinct ways can you climb to the top? For example for n = 8 there are 8 distinct ways:

T+1+1+1+17
1+1+1+2
1+1+2+1
1+2+1+1
2+1+1+1
1+2+2
2+1+2
2+2+1

Recursive -- (Memoization in the next slide)

function climbStairs(n):
if n<=1:
return 1

return climbStairs(n-1) + climbStairs(n-2)

memo = {}
function climb(i):
ifi<=1:
return 1
if i in memo:
return memoli]
memoli] = climb(i-1) + climb(i-2)

return memofi]

return climb(n)

Iterative -- Bottom Up

dp=[0] *(n+1)
dp[0] = dp[1] = 1

foriin 2..n:

dp(i] = dp[i-1] + dp[i-2]

return dp[n]

Exercise Sheet 5

Exercise 5.1 Max-Heap operations (1 point).

(a) Consider the following max-heap:

Draw the max-heap after inserting the elements 70 and 51 in that order.

Draw the max-heap after two ExtractMax operations.

Exercise 5.3 Quick(?) sort (1 point).

Recall the pseudocode for the quick sort algorithm from the lecture:

Algorithm 1 quick sort
function QUICKSORT(A, ¢, r)
if ¢ < r then
k = PARTITION(A, (1)
QuickSorT(A,l,k —1)
QuickSorT(A, k + 1,7)
6: function PART N(A, C,T)
i+ L
jer-=1

1:
2;
3:
4
5

p « Alr] > Choose the rightmost entry as pivot
repeat
while i < 7 and A[i] < pdo
t—i+1
while j >/ and A[j] > p do
J &=l
if i < j then
Swap A[i] and A[j]
until i > j
Swap A[i] and A[r] > At the end, the correct place for the pivot is i
Return ¢

We want to study the number of comparisons between array entries the quick sort algorithm performs
when we apply it to an array A[l...n| consisting of n unique integers which is already sorted in
ascending order (so A[1] < A[2] < ... < An]).

(a) Show that the number of comparisons T'(n) between array entries that QUICKSORT(A4, 1,n) per-
forms when applied to a sorted array A as above, and with the above rule to select the pivot satisfies
the recursive relation

T(1)=0, Tn)=TMnh-1)+(n-1) Vn>2.

You may assume for simplicity that PARTITION(A, £, r) always performs exactly £ — r comparisons
between entries. In your argument, refer to the pseudocode above.

Algorithm 2 Heap Construction

function HEAPIFy(T)
for ¢ = height(7")
for nodes NV at level ¢t do
for ¢ =t,... height(T) — 1 do
C1 < the left child of N, if no such child exists assign it key —oc.
Cy < the right child of N, if no such child exists assign it key —oc.
if key(C}) > key(C3) and key(C) > key(V) then
Swap the keys of nodes NV and (.
N «+
else if key(C1) < key(C3) and key(C2) > key(N) then
Swap the keys of nodes N and (.
N + C‘Q
else
Exit inner for loop

Let 7" be a complete binary tree consisting of n nodes with n > 2. Let H be the data structure that
results from executing Heapify (7).

(a) Prove that the executing Heapify(7") returns a valid heap.

Peer Grading

Exercise 5.3

