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Past Exercise Sheet

Exercise 6.1  Fibonacci trees (1 point).
For k£ € N, we define the Fibonacci tree T}, recursively:
+ The trees T and 75 are binary search trees with 1 and 2 nodes respectively, as depicted below.

« For k > 3, the tree T}, is constructed as follows. We start with a root node with key Fib(k+1)—1.
Then, we add as the left subtree of this root node the tree 7} _;. Finally, we add as a right subtree
the tree 7}, _o, but with all keys increased by Fib(k + 1).
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Note: To achieve full points for this exercise, it is enough to submit parts (e) and (f). The other parts
are not worth any points. When solving a part, you are allowed to use any earlier parts, even if you
did not solve them.




(e) Show that, in fact, for any k € N, and any node w in T}, that is not a leaf, we have |h;(u) —h, (u)| = 1.

Hint: Use induction. You will need to show multiple base cases. Be careful how you formulate the
induction hypothesis.




(f) Let & > 3 and odd. Show that the tree 7} contains a leaf at depth exactly (k — 1)/2. (Here, the
depth of a node is defined as the number of predecessors it has in the tree).

Hint: Draw the tree T5. Identify which leaf is at depth (5 — 1) /2 = 2.




Exercise 6.2  AVL Deduction.

Let T be an AVL tree and suppose we performed one node insertion to 7" to get 7" (we haven’t rebal-
anced yet). Only partial information about 7" is given. The graph of 7" looks like:

where T, T}, ..., T, are all subtrees whose nodes satisfy the AVL condition. Note that their leaves are
not necessarily at the same level.

The left and right subtree heights of B are both 1 and the left and right subtree heights of A are 2 and
3 respectively. Furthermore assume that D does not satisfy the AVL condition.

(a) What are the heights of the left and right subtrees of C?




Exercise 6.2  AVL Deduction.

Let T be an AVL tree and suppose we performed one node insertion to 7" to get 7" (we haven’t rebal-
anced yet). Only partial information about 7" is given. The graph of 7" looks like:

where T, T}, ..., T} are all subtrees whose nodes satisfy the AVL condition. Note that their leaves are
not necessarily at the same level.

The left and right subtree heights of B are both 1 and the left and right subtree heights of A are 2 and
3 respectively. Furthermore assume that D does not satisfy the AVL condition.

(b) Which subtree was the node inserted in?




Exercise 6.2  AVL Deduction.

Let T be an AVL tree and suppose we performed one node insertion to 7" to get 7" (we haven’t rebal-
anced yet). Only partial information about 7" is given. The graph of 7" looks like:

where T, T}, ..., T} are all subtrees whose nodes satisfy the AVL condition. Note that their leaves are
not necessarily at the same level.

The left and right subtree heights of B are both 1 and the left and right subtree heights of A are 2 and
3 respectively. Furthermore assume that D does not satisfy the AVL condition.

(c) What are the heights of the left and right subtrees of D?




Exercise 6.2  AVL Deduction.

Let T be an AVL tree and suppose we performed one node insertion to 7" to get 7" (we haven’t rebal-
anced yet). Only partial information about 7" is given. The graph of 7" looks like:

where T, T}, ..., T} are all subtrees whose nodes satisfy the AVL condition. Note that their leaves are
not necessarily at the same level.

The left and right subtree heights of B are both 1 and the left and right subtree heights of A are 2 and
3 respectively. Furthermore assume that D does not satisfy the AVL condition.

(d) Draw the tree after the necessary single or double rotation to rebalance 7" and restore the AVL
condition for all nodes. Also note the new left and right subtree heights for nodes A, B, C' and D.




Solution:

For A, left: 3, right: 3.
For B, left: 2, right: 2.
For C, left: 1, right: 1.
For D, left: 3, right: 4.




Exercise 6.3  Introduction to dynamic programming (1 point).

Consider the recurrence

1
A2n+1 — 5(14271, 4+ A2n—1>
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(a) Provide a recursive function (using pseudo code) that computes A,, for n € N. You do not have to

argue correctness.



Algorithm 1 A(n)

if n < 2 then

return n
else if n is odd then

return (A(n — 1) + A(n — 2))
else

1
1 1
return 2 (A(n—Q) W A(n—3))

(b) Lower bound the run time of your recursion from (a) by 2(C™) for some constant C' > 1.




(c) Improve the run time of your algorithm using memoization. Provide pseudo code of the improved

algorithm and analyze its run time.




(d) Compute A,, using bottom-up dynamic programming and state the run time of your algorithm. In
your solution, address the following aspects:

1. Dimensions of the DP table: What are the dimensions of the D P table?

2. Subproblems: What is the meaning of each entry?

3. Recursion: How can an entry of the table be computed from previous entries? Justify why your

recurrence relation is correct. Specify the base cases of the recursion, i.e., the cases that do not
depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

5. Extracting the solution: How can the solution be extracted once the table has been filled?

6. Running time: What is the running time of your solution?

Solution:

Dimensions of the DP table: The DP table is linear, its size is n.
Subproblems: DP|k] contains Ay for 1 < k < n.

Recursion: Initialize DP[1] to 1, DP[2] to 2. The entries with & > 3 are computed by
DPIk] = 3(DP[k—1]+DP[k—2]) for k odd and DP[k] = 2/(1/DP[k—1]+1/DP[k—2])
for k even (this is correct by the recursive definition of A[k]).

Calculation order: We can calculate the entries of D P from smallest to largest.
Extracting the solution: All we have to do is read the value at D P[n].

Running time: Each entrv can be computed in time ©(1), so the run time is ©(n).




Exercise 6.4  Maximum almost subarray sum (1 point).

The maximum subarray sum problem from the lecture asks for the sum of the largest contiguous sub-
array in a given array. The maximum almost subarray sum problem asks instead for the sum of the
largest contiguous subarray with one element possibly missing from inside this subarray.

We consider the following array of length n = 10.
All.n] =[3,2,-2,1,-2,-3,4,1, -3, 4]

In this exercise we’ll take the tools from the solution of maximum subarray sum and extend it to two
different methods of computing this maximum almost subarray sum.

(a) The dynamic programming solution for maximum subarray sum given in the lecture revolves around
the numbers

R[k] := maximum subarray sum of A[1..k] which includes index k

for 0 < k < n, where we define R[0] = 0. Then to get the maximum subarray sum we output
maxy, R[k].

In lecture we saw that this array R satisfies the recursive relation

R[0] =0
R[k] = max{A[k], A[k] + Rk — 1]} for1 <k <n

Compute the array for 1 < k < n = 10.




(b) Define the following modification of R
R'[k] := maximum subarray sum of A[1..k] which includes index k but skips an entry.

Assume that the following recursive relation is correct

R'[k] = max{A[k] + R'[k — 1], A[k] + R[k — 2]} for 3 < k < n.

Compute R'[k] for 1 < k < n = 10. How can the final solution for the maximum almost subarray
sum of A be extracted from R and R’? Write down the formula as a function of the entries of these
two arrays.




(a) Given are the two arrays
A=1[7,6,3,2,8,4,5,1]

and

B =3,9,10,8,7,1,2,6,4,5).

Use the dynamic programming algorithm from the lecture to find the length of a longest common
subsequence and the subsequence itself. Show all necessary tables and information you used to
obtain the solution.
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Extra Exercise

Let A be an AVL tree (as described in the lecture) with n nodes. Let k; < ko < ... < k;, be the keys
of A, in ascending order. For a given 1 < 7 < n, our goal is to find %;, the i-th smallest key of A.

(a) Suppose i = 1. Describe an algorithm that finds k; in O(log n) time.

Hint: An AVL tree is a BST (binary search tree).



Solution:

Since A is a BST, we know that for each node v with key key(v), the keys of its left subtree are all
smaller than key(v), while the keys of its right subtree are all greater than key(v). It follows that

k1 can be found by starting at the root node, and then repeatedly moving to the left child, until
we arrive at a node without a left child. As A is an AVL tree, it has depth O(logn), and so this
procedure takes time O(log n).




(b) Describe an algorithm that finds k; in O(7 - log n) time.

Hint: You are allowed to make changes to A while executing your algorithm.




(b) Describe an algorithm that finds k; in O(7 - log n) time.

Hint: You are allowed to make changes to A while executing your algorithm.




It turns out that we can find £; in time O(logn), if we modify the definition of an AVL tree a bit.

(c) Modify the definition of an AVL tree by storing two additional integers s;(v), s, (v) € N in each
node v. Assuming now that A satisfies your modified definition, describe an algorithm that finds

k; in O(logn) time.

Remark. Your modified definition should still allow for the search, insert and remove operations to
be performed in O(log n) time, but you are not required to prove that this is the case.




The additional integers we store are the sizes 0 < s;(v), s,(v) < n of the left and right subtree
rooted at the left and right child of v, respectively. (This information can be updated in time O(1)
during the rebalancing rotations performed during the insert and remove operations). Assuming A
is modified so that each node contains these integers, our algorithm to find k; proceeds as follows.

Let v be the root node of A. Set iy = i. We want to find the iy-th smallest key in the subtree rooted
at vg (which is just A). We consider the following three cases:

(i) If s;(vg) = ip — 1, we know that there are precisely ip — 1 keys in the subtree rooted in vy
that are smaller than key(vp); namely the keys in the subtree rooted in the left child of vy.
But that means that key(wvg) is the ig-th smallest key in the subtree rooted in vy, and so we
output key(vp).

(ii) If s;(vg) > ig — 1, the ip-th smallest key lies in the subtree rooted in the left child lc(vg) of vg.

(iii) If s;(vp) < ig — 1, the ig-th smallest key lies in the subtree rooted in the right child rc(v)
of vy.

Assuming we are in case (ii) or (iii), the idea is to proceed recursively by applying the same proce-
dure to the subtree rooted in the left (resp. right) child of vg.
In case (ii), note that the ig-th smallest key of the subtree rooted in lc(vg) is equal to the ip-th

smallest key of A (since all keys in the right subtree are too large). In this case, we can thus set
vy = le(vg) and i1 = 4p, and apply the procedure above.

In case (iii), things are slightly more complicated. Note that all s;(vy) keys in the subtree rooted at
le(wp) are smaller than key(vg), and that key(rc(vg)) > key(vg). That is to say, if we set

i1 = ip — (s1(vo) + 1),
then the i;-th smallest key in the subtree rooted in vy = rec(wvp) is precisely the ig-th smallest key

in the subtree rooted in vy (which is what we are after).

We now repeat this procedure until we reach case (i). Each repetition takes O(1) time. We move
one layer down in each repetition. If we ever reach a leaf, we are certainly in case (i). Therefore,
the whole algorithm takes at most O(logn) time (recall that A has depth O(log n)).




It turns out that we can find &; in time O(logn), if we modify the definition of an AVL tree a bit.

(c) Modify the definition of an AVL tree by storing two additional integers s;(v), s, (v) € N in each
node v. Assuming now that A satisfies your modified definition, describe an algorithm that finds
k; in O(logn) time.

Remark. Your modified definition should still allow for the search, insert and remove operations to
be performed in O(log n) time, but you are not required to prove that this is the case.

s L(v): number of nodes in the left subtree of v
S r(v): number of nodes in the right subtree of v

g(node, 1i):
if s 1(node) + 1 == 1
return node
if 1 < s l(node) + 1
return g(node.left, i)
if 1 > s l(node) + 1
return g(node.left, i - (s l(node) + 1))



Dynamic Programming on Trees

AT
_‘..'0“6' .
oy




https://atcoder.jp/contests/dp/tasks/dp_p

Tree Coloring

Given a rooted tree with n nodes.

We paint each node in white or black. Here, it is not allowed to paint two adjacent node both in

black.

Find the number of ways in which the nodes can be painted

Answer: 5 Answer: 5 Answer: 14 Answer: 24



https://atcoder.jp/contests/dp/tasks/dp_p

Answer: 41



Time Complexity: O(N)

First, lets root the tree arbitrary. Let dp[i] }] represent the number of ways to color subtree 2, coloring

node % color J.

Here, 7 = 0 is black and 7 = 1 is white. If we color node 2 black, then it's children must be all white.

So, we have

ap[i][0] = ] ] dple][1]

such that ¢ is 7's child, and if we color node 2 white, then it's children can be either white or black:

dp[i][1] = | [ (dp[c][0] + dpc][1])




Peer Grading

Exercise 6.1
Peer grading must be done with former groups

Sheet 7 must be submitted with new groups



