Algorithms and Data Structures

Exercise Session 0

About Me

- Ahmet Ala
- 3rd year Computer Science BSc.

About the Course

- 7 Credits
- Introduction to Algorithms and Data Structures
- Sorting algorithms, searching algorithms, abstract data types, greedy approach, dynamic programming, graph algorithms...
- Correctness and Run-Time Analysis
- Continues with Algorithms and Probability(second semester Basisblock Course) and Algorithms, Probability and Computing (Major: Theoretical Computer Science)
- But the content appears everywhere in Theoretische Informatik, Computer Networks, Numerical Methods for Computer Science etc.

Exercise Session Logistics

- CHN D 29
- Monday, 09:15-11.00
- Website for announcements, slides, kahoots etc.
- https://n.ethz.ch/~ahmala/and/

Homeworks (theoretical part)

- Groups of 2 and 3 (changes in every three weeks)
- New exercise sheet every monday, submissions sent either to ahmala@ethz.ch
 or handed in at the beginning of exercise session
- Deadline for Exercise Sheet 1 is next week (Oct 2, 09:15)
- Only today no peer grading
- 11:00 12:00 can be used for peer grading

Point Distribution

- 12* {Weekly theoretical exercise sheet(3 points) + peer grading(1 points)} [In Groups]
- 5* {Code Expert programming tasks(biweekly) (4 points)} [Individual]
- min(0.25, 0.25 * n_points / (0.8 * max_points))
- 0.25 bonus for 80% of full possible points

Induction Proofs

- Base Case(usually n=1): Show, the statement holds for n=1
- Induction Hypothesis(n=k): Assume the statement holds for n=k
- Induction Step(usually n=k+1): Show, the statement also holds for n=k+1
- (usually) By the principle of mathematical induction, this is true for any positive integer n.

Example

Prove by mathematical induction that for any positive integer n,

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
 .

Logarithms

Quite important for Asymptotic Analysis

$$\log_a(bc) = \log_a(b) + \log_a(c)$$

$$\log_a(b^c) = c \log_a(b)$$

$$\log_a(1/b) = -\log_a(b)$$

$$\log_a(1) = 0$$

$$\log_a(a) = 1$$

$$\log_a(a^r) = r$$

$$\log_{1/a}(b) = -\log_a(b)$$

$$\log_a(b) \log_b(c) = \log_a(c)$$

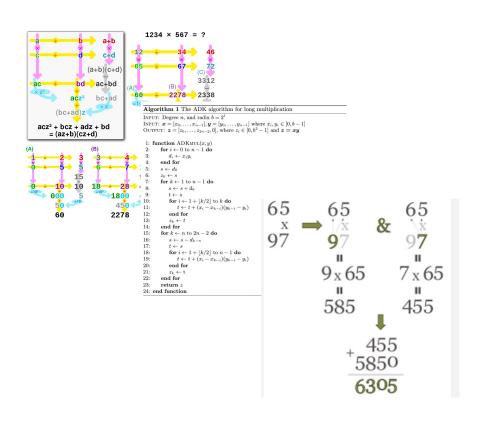
$$\log_a(b) \log_b(c) = \frac{1}{\log_a(b)}$$

$$\log_a^m(a^n) = \frac{n}{m}, \quad m \neq 0$$

$$\log_b a = rac{\log_d a}{\log_d b}$$

De l'Hopital Rule

Let $f, g : \mathbb{R} \to \mathbb{R}$ be differentiable functions with $f(x) \to \infty$, $g(x) \to \infty$ for $x \to \infty$. If $\lim_{x \to \infty} \frac{f'(x)}{g'(x)}$ exists, then


$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

$1 < log(log(n)) < log(n) < \sqrt{n} < n < n \cdot log(n) < n$	$2^2 < 2^n < n!$

Pasture Break Succeeded

Karatsuba Algorithm(not relevant as well)

Groups