Algorithms and Data Structures

Exercise Session 10

EXAM

Theory Exam: 8:30-10:30 am in 22nd January
Programming Exam: 9:30-12:30 am in 29th January.

Share of the 4 main topics in exam questions (theory+programming)

-@— 1. Mathematical foundations
~#- 2. DP and greedy

3. Searching and sorting
== 4. Graph algorithms

20% /.\
10% -

0%
HS2018 FS2019 HS2019

https://cdn.vis.ethz.ch/luk/pvw_algorithmenunddatenstrukturen.pdffpage=5

https://cdn.vis.ethz.ch/luk/pvw_algorithmenunddatenstrukturen.pdf#page=5

Recap

Topological Sorting = Topological Ordering
Directed edge = Arc
(u,v) : directed edge from u to v

{uv} : undirected edge between u and v

Confusion

German Kreis = English cycle; German Zyklus = English circuit.

Exercise 10.1 Eulerian tours in multigraphs (1 point).

A multigraph G = (V, E) is a graph which is permitted to have multiple copies of the same edge.
That is, the edges E form a multiset (a set in which elements are allowed to occur multiple times). For
example, the multigraph with V = {1,2,3,4} and E = {{A, B}, {A, B},{A, D},{B,C},{A,C}}is

depicted below. To avoid confusion, the term simple graph is sometimes used to indicate that duplicate

edges are not allowed.

(a) An Eulerian tour in a multigraph is a tour which visits every edge exactly once. If multiple copies
of an edge exist, the tour should visit each of them exactly once. Given a multigraph G = (V, E),
describe an algorithm which constructs a simple graph G’ = (V' E’) such that G has a Eulerian
tour if and only if G’ has a Eulerian tour. The new graph should satisfy |[V'| < |V| + |E|, and
|E’| < 2-|E|. The runtime of your algorithm should be at most O(n + m). You are provided with
the number of vertices n and an adjacency list of GG (if there are multiple edges between v, w € V/,
then w appears that many times in the list of neighbours of v).

(b)* Let G = (V, E) be a simple graph, and let f : E — NU {0} be a function. A Eulerian f-tour of G'is
a tour which visits each edge e € F exactly f(e) times. Describe an algorithm which constructs a
simple graph G’ = (V' E’) such that G has a Eulerian f-tour if and only if G’ has a Eulerian tour.
The new graph should satisfy |V'| < |V|+ > cp f(e), and |E'| < 2% _p f(e). The runtime of
your algorithm should be at most O(n +m + > . f(e)).

Exercise 10.2 Depth-first search (1 point).

Execute a depth-first search (Tiefensuche) on the following graph. Use the algorithm presented in the
lecture. Always do the calls to the function “visit” in alphabetical order, i.e. start the depth-first search
from A and once “visit(A)” is finished, process the next unmarked vertex in alphabetical order. When
processing the neighbors of a vertex, also process them in alphabetical order.

Exercise 10.2 Depth-first search (1 point).

Execute a depth-first search (Tiefensuche) on the following graph. Use the algorithm presented in the
lecture. Always do the calls to the function “visit” in alphabetical order, i.e. start the depth-first search
from A and once “visit(A)” is finished, process the next unmarked vertex in alphabetical order. When
processing the neighbors of a vertex, also process them in alphabetical order.

Does it have topological ordering?

Does it have a topological ordering if
we remove the edge from B to A and
add an edge from F to I?

If you sort the vertices by pre-number,
does this give a topological sorting?

If you sort the vertices by pre-number,
does this give a topological sorting?

Cross Edges are a problem.
For example | to B.

Exercise 10.3 Driving on highways.

In order to encourage the use of train for long-distance traveling, the Swiss government has decided
to make all the m highways between the n major cities of Switzerland one-way only. In other words,
for any two of these major cities C'; and Cy, if there is a highway connecting them it is either from C'y
to Cs or from (s to C1, but not both. The government claims that it is however still possible to drive
from any major city to any other major city using highways only, despite these one-way restrictions.

(a) Model the problem as a graph problem. Describe the set of vertices V' and the set of edges E' in
words. Reformulate the problem description as a graph problem on the resulting graph.

Exercise 10.3 Driving on highways.

In order to encourage the use of train for long-distance traveling, the Swiss government has decided
to make all the m highways between the n major cities of Switzerland one-way only. In other words,
for any two of these major cities C'; and Cy, if there is a highway connecting them it is either from C'y
to Cs or from (s to C1, but not both. The government claims that it is however still possible to drive
from any major city to any other major city using highways only, despite these one-way restrictions.

(a) Model the problem as a graph problem. Describe the set of vertices V' and the set of edges E' in
words. Reformulate the problem description as a graph problem on the resulting graph.

Solution:

V is the set of major cities in Switzerland (which is of size |V'| = n), and there is a directed edge
fromwu € V tov € V ifand only if there is a highway going from city « to city v. The corresponding
graph problem is to determine whether for any two vertices u, v € V, there is a (directed) path from
utovinG = (V, E).

(b) Describe an algorithm that verifies the correctness of the claim in time O(n +m). Argue why your
algorithm is correct and why it satisfies the runtime bound.

Hint: You can make use of an algorithm from the lecture. However, you might need to modify the
graph described in part (a) and run the algorithm on some modified graph.

Exercise 10.4 Strongly connected components (1 point).

Let G = (V, F) be a directed graph with n vertices and m edges. Recall from Exercise 9.5 that two
distinct vertices v, w € V are strongly connected if there exist both a directed path from v to w, and

from w to v.

The vertices of G can be partitioned into disjoint subsets V1, V5, ...,V C V withV = VUVLU. . .UV,
such that any two distinct vertices v, w € V are strongly connected if and only if they are in the same
subset Vj, for some 1 < ¢ < k. The subsets V are called the strongly connected components of G.

As in Exercise 9.5, you are provided with the number of vertices n, and the adjacency list Adj of G.
(a) Describe an algorithm that outputs the strongly connected components of G intime O(n - (n + m)).

Hint: Apply the algorithm of Exercise 9.5 several times. After each application, remove a vertex fromG.

(b)* Let L = [v1,v2,...,vy] be a list containing the vertices of G in the reversed post-order of a DFS.
Show that L has the following property:

‘For any distinct v, w € V, if there is a directed path from v to w, then
(1) v and w are strongly connected; and/or

(2) there exists a u € V which is in the same strongly connected component as v, and which
appears before w in L.

Remark. You are allowed to use this part in the rest of the exercise, even if you do not solve it.

%
(c) Let G = (V, %) be the directed graph obtained by inverting all edges in (G. Let v; be the first
element of L. Let W C V be the set of vertices w for which there is a directed path from v; to w

F
in G. Show that W is a strongly connected component of G.

(d) Describe an algorithm that outputs all strongly connected components of GG. The runtime of your

algorithm should be at most O(n + m). Prove that your algorithm is correct, and achieves the
desired runtime.

<_
Hint: Use DFS on the inverted graph GG. Make visit-calls based on the list L.

Algorithm 1

Input: a weighted graph, represented via c(-, -). Specifically, for two vertices u, v the value c(u, v)
represents the cost of an edge from u to v (or oo if no such edge exists).
function DijksTRA(G, s)

A p p Iy D IJ kSTrq! d[s] < 0 > upper bounds on distances from s

d[v] <~ oo forallv # s
S0 > set of vertices with known distances

while S # V do
choose v* € V' \ S with minimum upper bound d[v*]
add v* to S
update upper bounds for allv € V'\ S:
d[U] — minpredecessor u€sS of v d[u] + C(”v U)
(if v has no predecessors in S, this minimum is co)

Dijkstra with Fibonacci-Heaps: O(|E| + |V| log |V])
Dijkstra with Binary-Heaps: O((|E| + |V]) log |V|)

Dijkstra only works only with non-negative weights.

You are given a maze that is described by a n x n grid of blocked and unblocked cells (see Figure 1).
There is one start cell marked with ’S” and one target cell marked with "T’. Starting from the start cell
your algorithm may traverse the maze by moving from unblocked fields to adjacent unblocked fields.
The goal of this exercise is to devise an algorithm that given a maze returns the best solution (traversal

from’S’ to "T’) of the maze. The best solution is the one that requires the least moves between adjacent
fields.

Hint: You may assume that there always exists at least one unblocked path from 'S’ to 'T" in a maze.

T

Figure 1: An example of 7 X 7 maze in which purple fields are blocked, white fields can be traversed
(are unblocked). The start field is marked with °S’ and the target field with a "T".

T

Figure 1: An example of 7 x 7 maze in which purple fields are blocked, white fields can be traversed
(are unblocked). The start field is marked with °S’ and the target field with a "T".

a) Model the problem as a graph problem. Describe the set of vertices V' and the set of edges E in
words. Reformulate the problem description as a graph problem on the resulting graph.

T

Figure 1: An example of 7 x 7 maze in which purple fields are blocked, white fields can be traversed
(are unblocked). The start field is marked with ’S’ and the target field with a "T".

a) Model the problem as a graph problem. Describe the set of vertices V' and the set of edges E in
words. Reformulate the problem description as a graph problem on the resulting graph.

Solution: V is the set of unblocked fields, and there is an edge between v; and v; if and only if v;
and v; are adjacent unblocked fields. The corresponding graph problem is to find a shortest path
between vertices 'S’ and ‘T"in G = (V, E).

b) Choose a data structure to represent your maze-graphs and use an algorithm discussed in the lecture
to solve the problem.

b) Choose a data structure to represent your maze-graphs and use an algorithm discussed in the lecture
to solve the problem.

Solution: The data structure is adjacency list, the algorithm is BFS starting from ‘S’. Once we know
all the distances from ‘S’, we append vertices to a sequence starting from ‘“T” using the following
rule: if the last appended vertex is v, we append some neighbour u of v such that dg('S’,v) =
da(‘S’,u) + 1. We stop after appending ‘S’. Then we return a reverse sequence.

c) Determine the running time and memory requirements of your algorithm in terms of n in © nota-
tion.

c) Determine the running time and memory requirements of your algorithm in terms of n in © nota-
tion.

Solution: Adjacency list requires O(|V| + | E|) memory, where V' is a number of vertices and |E|
is a number of edges in the graph. BFS requires O(|V| + |F|) time and appending procedure also
requires O(|V| + |E|) time, so the total running time is ©(|V'| 4 | E|). Since each vertex has degree

at most 4, |E| = O(|V]), so the running time and memory are ©(|V|) which is ©(n?) in the worst
case.

Peer Grading

Exercise 10.4
You will find the file to peergrade in your polybox folder

While emailing your peer grading to me please include the group
you corrected their work in cc.

https://docs.google.com/spreadsheets/d/1owPs]sd9THBWInwFcVjK

CcOf _rén4pGwwDKMDdwaCjM/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1owPsJsd9THBWInwFcVjKCc0f_r6n4pGwwDKMDdwaCjM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1owPsJsd9THBWInwFcVjKCc0f_r6n4pGwwDKMDdwaCjM/edit?usp=sharing

