Algorithms and Data Structures

Exercise Session 2

https://n.ethz.ch/~ahmala/and

Common Mistakes

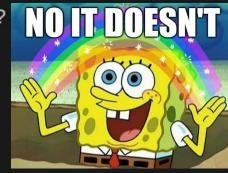
• Why does the following mean f(m) grow asymptotically slower than g(m)?

 $f(m)\in \mathcal{O}(g(m))$

Common Mistakes

Why does the following mean f(m) grow asymptotically slower than g(m)?

 $f(m)\in \mathcal{O}(g(m))$



Counter Example

 $egin{aligned} f(m) &= m, g(m) = m \ f(m) \in \mathcal{O}(g(m)) \end{aligned}$

Common Mistakes

Is the following correct?

$$\lim_{n o \infty} A(n) = 0 \implies \lim_{n o \infty} ig(A(n) \cdot B(n) ig) = 0$$

$$h: \mathbb{N} \mapsto \mathbb{N}$$
 (1)
 $h \text{ grows asymptotically faster than 1}$ (2)

Do (1) and (2) mean h grows faster than or equal to k(n) = n?

$h: \mathbb{N} \mapsto \mathbb{N}$ (1) h grows asymptotically faster than 1 (2)

Do (1) and (2) mean h grows faster than or equal to k(n) = n?

NO! Consider $\lfloor \sqrt{n} \rfloor$

Is it possible to have more than one base case in induction?

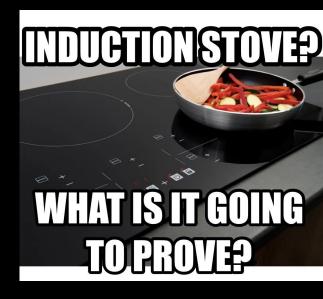
Is it possible to have more than one base case in induction?

- P(n):= an n-cent postage can be made up using 3-cent and 7-cent stamps
- Prove P(n) for all n, where n is a natural number and n>=12 holds.

Exercise 2.1 Induction.

(a) Prove via mathematical induction that for all integers $n \ge 5$,

 $2^n > n^2$.



(b) Let x be a real number. Prove via mathematical induction that for every positive integer n, we have

$$(1+x)^n = \sum_{i=0}^n \binom{n}{i} x^i$$

where

$$\binom{n}{i} = \frac{n!}{i!(n-i)!} \,.$$

We use a standard convention 0! = 1, so $\binom{n}{0} = \binom{n}{n} = 1$ for every positive integer n.

Hint: You can use the following fact without justification: for every $1 \le i \le n$,

$$\binom{n}{i} + \binom{n}{i-1} = \binom{n+1}{i}$$

Theorem 1 (Theorem 1.1 from the script). Let N be an infinite subset of \mathbb{N} and $f : N \to \mathbb{R}^+$ and $g : N \to \mathbb{R}^+$.

• If
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
, then $f \le O(g)$ and $g \le O(f)$.

• If
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = C \in \mathbb{R}^+$$
, then $f \leq O(g)$ and $g \leq O(f)$.

• If
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$
, then $f \not\leq O(g)$ and $g \leq O(f)$.

Theorem 2. Let $f, g, h : N \to \mathbb{R}^+$. If $f \leq O(h)$ and $g \leq O(h)$, then

- 1. For every constant c > 0, $c \cdot f \leq O(h)$.
- 2. $f + g \le O(h)$.

Notice that for all real numbers a, b > 1, $\log_a n = \log_a b \cdot \log_b n$ (where $\log_a b$ is a positive constant). Hence $\log_a n \le O(\log_b n)$. So you don't have to write bases of logarithms in asymptotic notation, that is, you can just write $O(\log n)$.

Exercise 2.2 *O-notation quiz.*

- (a) For all the following functions the variable n ranges over \mathbb{N} . Prove or disprove the following statements. Justify your answer.
 - (1) $2n^5 + 10n^2 \le O(\frac{1}{100}n^6)$ (2) $n^{10} + 2n^2 + 7 \le O(100n^9)$ (3) $e^{1.2n} \le O(e^n)$

 $(4)^* \ n^{\frac{2n+3}{n+1}} \le O(n^2)$

$$\lim_{n
ightarrow\infty}rac{n^{\left(rac{2n+3}{n+1}
ight)}}{n^2} \ \lim_{n
ightarrow\infty}rac{n^{\left(rac{2n+2}{n+1}+rac{1}{n+1}
ight)}}{n^2}$$

$$r=\lim_{n
ightarrow\infty}rac{n^{\left(2+rac{1}{n+1}
ight)}}{n^2}$$

$$= \lim_{n o \infty} rac{n^2 n^{\left(rac{1}{n+1}
ight)}}{n^2}$$

$$= \lim_{n o \infty} n^{\left(rac{1}{n+1}
ight)}$$

 $n^{rac{2n+3}{n+1}} \leq \mathcal{O}(n^2)$

 $n^{\left(rac{2n+3}{n+1}
ight)}$ $\lim_{n
ightarrow\infty}$ n^2

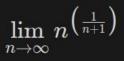
$$= \lim_{n o \infty} rac{n^{\left(rac{2n+2}{n+1}+rac{1}{n+1}
ight)}}{n^2}$$

$$u=\lim_{n
ightarrow\infty}rac{n^{\left(2+rac{1}{n+1}
ight)}}{n^2}$$

$$= \lim_{n o \infty} rac{n^2 n^{\left(rac{1}{n+1}
ight)}}{n^2}$$

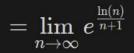
$$= \lim_{n o \infty} n^{\left(rac{1}{n+1}
ight)}$$

$$n^{rac{2n+3}{n+1}} \leq \mathcal{O}(n^2)$$



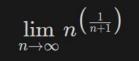
 $= \lim_{n o \infty} e^{\ln(n^{\left(rac{1}{n+1}
ight)})}$

 $= \lim_{n o \infty} e^{\left(rac{1}{n+1}\ln(n)
ight)}$



 $= e^0$

=1



(b) Find f and g as in Theorem 1 such that $f \leq O(g)$, but the limit $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ does not exist. This proves that the first point of Theorem 1 provides a sufficient, but not a necessary condition for $f \leq O(g)$.

Exercise 2.3 Asymptotic growth of $\sum_{i=1}^{n} \frac{1}{i}$ (1 point).

The goal of this exercise is to show that the sum $\sum_{i=1}^{n} \frac{1}{i}$ behaves, up to constant factors, as $\log(n)$ when n is large. Formally, we will show $\sum_{i=1}^{n} \frac{1}{i} \leq O(\log n)$ and $\log n \leq O(\sum_{i=1}^{n} \frac{1}{i})$ as functions from $\mathbb{N}_{\geq 2}$ to \mathbb{R}^+ .

For parts (a) to (c) we assume that $n = 2^k$ is a power of 2 for $k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$. We will generalise the result to arbitrary $n \in \mathbb{N}$ in part (d). For $j \in \mathbb{N}$, define

$$G_j = \sum_{i=2^{j-1}+1}^{2^j} \frac{1}{i}.$$

(a) For any $j \in \mathbb{N}$, prove that $S_j \leq 1$.

Hint: Find a common upper bound for all terms in the sum and count the number of terms.

(b) For any $j \in \mathbb{N}$, prove that $S_j \geq \frac{1}{2}$.

(c) For any $k \in \mathbb{N}_0$, prove the following two inequalities

$$\sum_{i=1}^{2^k} \frac{1}{i} \le k+1$$

and

$$\sum_{i=1}^{2^k} \frac{1}{i} \ge \frac{k+1}{2}.$$

Hint: You can use that $\sum_{i=1}^{2^k} \frac{1}{i} = 1 + \sum_{j=1}^k S_j$. Use this, together with parts (a) and (b), to prove the required inequalities.

(d)* For arbitrary $n \in \mathbb{N}$, prove that

$$\sum_{i=1}^{n} \frac{1}{i} \le \log_2(n) + 2$$
$$\sum_{i=1}^{n} \frac{1}{i} \ge \frac{\log_2 n}{2}.$$

and

Hint: Use the result from part (c) for $k_1 = \lceil \log_2 n \rceil$ and $k_2 = \lfloor \log_2 n \rfloor$. Here, for any $x \in \mathbb{R}$, $\lceil x \rceil$ is the smallest integer that is at least x and $\lfloor x \rfloor$ is the largest integer that is at most x. For example, $\lceil 1.5 \rceil = 2$, $\lfloor 1.5 \rfloor = 1$ and $\lceil 3 \rceil = \lfloor 3 \rfloor = 3$. In particular, for any $x \in \mathbb{R}$, $x \leq \lceil x \rceil < x + 1$ and $x \geq \lfloor x \rfloor > x - 1$.

Exercise 2.4 Asymptotic growth of $\ln(n!)$.

Recall that the factorial of a positive integer n is defined as $n! = 1 \times 2 \times \cdots \times (n-1) \times n$. For the following functions n ranges over $\mathbb{N}_{\geq 2}$.

(a) Show that $\ln(n!) \leq O(n \ln n)$.

Hint: You can use the fact that $n! \leq n^n$ for $n \in \mathbb{N}_{\geq 2}$ without proof.

(b) Show that $n \ln n \le O(\ln(n!))$.

Hint: You can use the fact that $\left(\frac{n}{2}\right)^{\frac{n}{2}} \leq n!$ for $n \in \mathbb{N}_{\geq 2}$ without proof.

Exercise 2.5 *Testing equations* (2 points).

Your friend sends you a piece of code that computes his favorite function $f : \mathbb{N} \to \mathbb{N}$. For $n \in \mathbb{N}$, we want to test if the equation f(a) + f(b) + f(c) = f(d) can be satisfied using positive integers $1 \le a, b, c, d \le n$. Your friend completed Algorithms and Data Structures last year, and so you may assume that his code computes f(k) in O(1) for any $k \in \mathbb{N}$. You may also assume simple arithmetic operations on integers can be performed in O(1). Finally, you may initialize an array of size k in time O(k).

(a) Design a simple $O(n^4)$ algorithm that outputs "YES" if there exist integers $1 \le a, b, c, d \le n$ such that f(a) + f(b) + f(c) = f(d) and "NO" otherwise.

(b) Assume that $f(k) \leq k^3$ for all $k \in \mathbb{N}$. Modify your previous algorithm so that it works in time $O(n^3)$ under this assumption. Motivate briefly why it still works.

Hint: You could use a helper array of size n^3 to get rid of one of the loops in your previous algorithm. The helper array could save which values the function f can take.

(c)* Assume that $f(k) \leq k^2$ for all $k \in \mathbb{N}$. Modify your previous algorithm so that it works in time $O(n^2)$ under this assumption. Motivate briefly why it still works.

Hint: You could use a helper array again. Note that f(a) + f(b) + f(c) = f(d) implies that f(a) + f(b) = f(d) - f(c).

Bonus Exercises Next Week

(a) Prove or disprove the following statements. Justify your answer.

- (1) $\frac{1}{5}n^3 \ge \Omega(10n^2)$
- (2) $n^2 + 3n = \Theta(n^2 \log(n))$
- (3) $5n^4 + 3n^2 + n + 8 = \Theta(n^4)$
- (4) $3^n \ge \Omega(2^n)$
- (b) Prove the following statements.

Hint: For these examples, computing the limits as in Theorem 1 is hard or the limits do not even exist. *Try to prove the statements directly with inequalities as in the definition of the O-notation.*

- (1) $(\sin(n) + 2)n = \Theta(n)$
 - *Hint*: For any $x \in \mathbb{R}$ we have $-1 \leq \sin(x) \leq 1$.
- (2) $\sum_{i=1}^{n} \sum_{j=1}^{i} j = \Theta(n^3)$

Hint: In order to show $n^3 \leq O(\sum_{i=1}^n \sum_{j=1}^i j)$, you can use exercise 1.3.

- (3) $\log(n^4 + n^3 + n^2) \le O(\log(n^3 + n^2 + n))$
- (4)* $\sum_{i=1}^{n} \sqrt{i} = \Theta(n\sqrt{n})$

Hint: Recall again exercise 1.3 and try to do an analogous computation here.

Exercise 3.3 Counting function calls in loops (1 point).

For each of the following code snippets, compute the number of calls to f as a function of $n \in \mathbb{N}$. Provide **both** the exact number of calls and a maximally simplified asymptotic bound in Θ notation.

Algorithm 1		
(a) $i \leftarrow 0$		
while $i \leq n$ do		
f()		
f()		
$i \leftarrow i+1$		
$j \leftarrow 0$		
while $j \leq 2n \operatorname{do}$		
f()		
$j \leftarrow j + 1$		

	Algorithm 2			
(b)	$i \leftarrow 1$			
	while $i \leq n$ do			
	$j \leftarrow 1$			
	while $j \leq i^3$ do			
	f()			
	$j \leftarrow j + 1$			
	$i \leftarrow i+1$			

Hint: See Exercise 1.4.

Maximum Subarray Sum Problem

https://cses.fi/problemset/task/1643/

WHEN YOU KNOW THE ANSWER ON KAHOOT

Peer Grading

Exercise 2.5.a and 2.5.b