Algorithms and Data Structures

Exercise Session 3




Code Expert

First programming task on Wednesday

40% Of the exaim Theory will only take you so far

You get one point for each passing test set. To pass both test sets correctly, y ion has to be in

O(logn) time.

. Median of Three - Student attempt e 2 Ahmet Ala = f
Exercises 1 Main {
2 [ X9

5
3 main(String[] args) {
o - 4 round - In.readInt(); y
Todo Incomplete [l Complete Feedback 5 ( SRR )

6 d 2 Not submitted yet
i
8

9

Filters  Show more + Sort by

Out.println(median(In.readInt(), In.readInt(), In.readInt()));
Your best submission counts
Warm-Up Assignment Closed 2 years ago }

B welcome 10 median( ER b, o)

11 t
B Median of Three 12 0;

=

14} .
R — 4o Closed 2 years ag0 Median of Three
[@B8 11 Nearest Muttiple 2 5F) Your task is to write a program that, given three distinct integers, returns their median. For example, if the
a 1.2 Longest Alternating Subarray 2 8 input is 3, 1and 2, the output is 2. You only need to implement the method "median" in the file "Main.java".
Programming Assignment 2 4 5@ Closed 2 years ago

tions avai

[€B 21 Range Counting 2 @@

{8 2.2 Triangles 2 @




Exercise 3.1.a

(a) Prove or disprove the following statements. Justify your answer.
(1) in® > Q(10n?)
(2) n? + 3n = O(n?log(n))
(3) 5n* + 3n% +n+ 8 = O(n?)
(4) 3" > Q(2")



(1) (sin(n) 4+ 2)n = O(n)

Hint: For any x € R we have —1 < sin(x) < 1.



(2) Y Y i =0(n?)

Hint: In order to shown® < O(>_ ", Z;:l 7), you can use exercise 1.3.



(3) log(n* + n +n?) < O(log(n? + n? +n))



(4" >, Vi=0(ny/n)

Hint: Recall again exercise 1.3 and try to do an analogous computation here.



Exercise 3.2 Substring counting.

Given a n-bit bitstring S (an array over {0, 1} of size n € N), and an integer k£ > 0, we would like to

count the number of nonempty substrings of S with exactly £ ones. For example, when S = “0110”
and k = 2, there are 4 such substrings: “0117, “11”, “110”, and “0110”.

(a) Design a “naive” algorithm that solves this problem with a runtime of O(n?). Justify its runtime
and correctness.

(b) We say that a bitstring S’ is a (non-empty) prefix of a bitstring S if S’ is of the form S|0..i] where
0 < i < length(SS). For example, the prefixes of S = “0110” are “0”, “01”, “011” and “0110”.

Given a n-bit bitstring .S, we would like to compute a table 7" indexed by 0..n such that for all ,
T'[i] contains the number of prefixes of S with exactly 7 ones.

For example, for S = “01107, the desired table is 7' = [1, 1, 2, 0, 0], since, of the 4 prefixes of S, 1
prefix contains zero “17, 1 prefix contains one “17, 2 prefixes contain two “1”, and 0 prefix contains
three “1” or four “17.

Describe an algorithm PREFIXTABLE that computes 7" from S in time O(n), assuming S has size n.

Remark: This algorithm can also be applied on a reversed bitstring to compute the same table for
all suffixes of S. In the following, you can assume an algorithm SUFFIXTABLE that does exactly this.



(c) Let S be a n-bit bitstring. Consider an integer m € {0,...,n — 1}, and divide the bitstring S into
two substrings S[0..m] and S[m + 1..n — 1]. Using PREFIXTABLE and SUFFIXTABLE, describe an
algorithm SPANNING(m, k, S) that returns the number of substrings S[i..j] of S that have exactly

k ones and such that i < m < j. What is its complexity?

For example, if S = “0110”, k = 2, and m = 0, there exist exactly two such strings: “011” and
“0110”. Hence, SPANNING(m, k, S) = 2.

Hint: Each substring S[i..j] withi < m < j can be obtained by concatenating a string S|i..m| that
is a suffix of S[0..m] and a string S|m + 1..j] that is a prefix of S[m + 1..n — 1].



(d)* Using SPANNING, design an algorithm with a runtime’ of at most O (n log n) that counts the number

of nonempty substrings of a n-bit bitstring .S with exactly & ones. (You can assume that n is a power
of two.)

Hint: Use the recursive idea from the lecture.



Exercise 3.3  Counting function calls in loops (1 point).

For each of the following code snippets, compute the number of calls to f as a function of n € N.
Provide both the exact number of calls and a maximally simplified asymptotic bound in © notation.

Algorithm 1
(@ <0

whilei < n do
f0
f0
t+—1i+1

j<0

while j < 2n do

f0
j<J3+1

Algorithm 2
(b) i<+ 1
while i < n do

j«1

while j < % do
f0
W [ e

1 i1+1

Hint: See Exercise 1.4.



Exercise 3.4  Fibonacci numbers.

There are a lot of neat properties of the Fibonacci numbers that can be proved by induction. Recall that
the Fibonacci numbers are defined by fo = 0, fi = 1 and the recursion relation f, 11 = f,, + fn—1 for
all n > 1. For example, fo = 1, f5 = 5, fi0 = 55, f15 = 610.

(a) Prove that f,, > % -1.5" forn > 1.

'For this running time bound, we let n range over natural numbers that are at least 2 so that n log(n) > 0.



(b) Write an O(n) algorithm that computes the nth Fibonacci number f,, for n € N.

Remark: As shown in part (a), f,, grows exponentially (e.g., at least as fast as €2(1.5™)). On a physical
computer, working with these numbers often causes overflow issues as they exceed variables’ value

limits. However, for this exercise, you can freely ignore any such issue and assume we can safely do
arithmetic on these numbers.

Algorithm 7

F + int[n + 1]
F[0] « 0
F[1] «+1
for: <+ 2,....,ndo
F[i| + F[i — 2]+ F[i — 1]
return F'[n]




(c) Given an integer k > 2, design an algorithm that computes the largest Fibonacci number f,, such
that f,, < k. The algorithm should have complexity O(log k). Prove this.

Remark: Typically we express runtime in terms of the size of the input n. In this exercise, the runtime
will be expressed in terms of the input value k.

Hint: Use the bound proved in part (a).

Algorithm 8

F + int[K]
F[0] «< 0
F[1] <1
4=l
while F[i] < k do
P11
Fli| « F[i — 2] + F[i — 1]

return F[i — 1]




Exercise 3.5  Iterative squaring.

In this exercise you are going to develop an algorithm to compute powers a", with a € Z and n €
N, efficiently. For this exercise, we will treat multiplication of two integers as a single elementary
operation, i.e., for a, b € Z you can compute «a - b using one operation.

(a) Assume that n is even, and that you already know an algorithm A,, /5(a) that efficiently computes
a™?, ie., A, 12(a) = a™?. Given the algorithm A,, /2> design an efficient algorithm A, (a) that
computes a'.



Exercise 3.5  Iterative squaring.

In this exercise you are going to develop an algorithm to compute powers a", with a € Z and n €
N, efficiently. For this exercise, we will treat multiplication of two integers as a single elementary
operation, i.e., for a, b € Z you can compute «a - b using one operation.

(a) Assume that n is even, and that you already know an algorithm A,, /5(a) that efficiently computes
a™?, ie., A, sala) = a™?. Given the algorithm A,, /2> design an efficient algorithm A, (a) that
computes a'.

Algorithm 9 A,,(a)

T An/Q(a)

return r - x




(b) Let n = 2%, for k € Ny. Find an algorithm that computes a” efficiently. Describe your algorithm
using pseudo-code.



(b) Let n = 2F, for k € Ny. Find an algorithm that computes a” efficiently. Describe your algorithm
using pseudo-code.

Solution:

Algorithm 10 Power(a, n)

if n = 1 then
return a
else

x < Power(a,n/2)
returnr - x




(c) Determine the number of elementary operations (i.e., integer multiplications) required by your
algorithm for part b) in O-notation. You may assume that bookkeeping operations don’t cost any-
thing. This includes handling of counters, computing n/2 from n, etc.



(c) Determine the number of elementary operations (i.e., integer multiplications) required by your
algorithm for part b) in O-notation. You may assume that bookkeeping operations don’t cost any-
thing. This includes handling of counters, computing n/2 from n, etc.

Solution:

Let T'(n) be the number of elementary operations that the algorithm from part b) performs on input
a,n. Then

Tn)<Tn/2)+1<Tn/4)+2<T(n/8)+3<...<T(1)+logyn < O(logn) .2



(d) LetPower(a,n) denote your algorithm for the computation of a” from part b). Prove the correctness
of your algorithm via mathematical induction for all n € N that are powers of two.

In other words: show that Power(a,n) = a" for all n € N of the form n = 2* for some k € Np.
Solution:

» Base Case.
Let k = 0. Then n = 1 and Power(a,n) = a = a'.

 Induction Hypothesis.
k
Assume that the property holds for some positive integer k. That is, Power(a, 2¥) = a?".

 Inductive Step.
We must show that the property holds for £ + 1.

Power(a, 2’““) = Power(a, Qk) - Power(a, Qk) L L ]

By the principle of mathematical induction, this is true for any integer & > 0 and n = 2*,



(e)* Design an algorithm that can compute a™ for a general n € N, i.e., n does not need to be a power
of two.

Hint: Generalize the idea from part (a) to the case where n is odd, i.e., there exists k € N such that
n =2k + 1.

Solution:

Algorithm 11 Power(a, n)

if n = 1 then
return a
else

if n is odd then
x < Power(a, (n —1)/2)
returnz -x - a

else
x < Power(a,n/2)
returnz - x




Kahoot!

€ Scan QR Code

WHEN YOU MISCLICK
>
{.

e
‘,{

ico.guide/silver/binary-search?lang=cpp

Bo. INAKAHOOT GAME




Peer Grading with the former group

Exercise 3.1

https://docs.google.com/spreadsheets/d/1owPs]sd9THBWInwEFcVjK
Cc0f_r6nd4pGwwDKMDdwaCjM/edit?usp=sharing



https://docs.google.com/spreadsheets/d/1owPsJsd9THBWInwFcVjKCc0f_r6n4pGwwDKMDdwaCjM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1owPsJsd9THBWInwFcVjKCc0f_r6n4pGwwDKMDdwaCjM/edit?usp=sharing

